
MS&E 310 Homework #2
Linear Programming Optional - not graded

HOMEWORK ASSIGNMENT 2

Reading: Chapters 3-4 of L&Y, Introduction to Linear and Nonlinear Program-
ming.

1. Farkas’ lemma can be used to derive many other (named) theorems of the
alternative. This problem concerns a few of these pairs of systems. Using Farkas’s
lemma, prove each of the following results.

(a) Gordan’s Theorem. Exactly one of the following systems has a solution:

(i) Ax > 0
(ii) yTA = 0, y ≥ 0, y 6= 0.

(b) Stiemke’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≥ 0, Ax 6= 0
(ii) yTA = 0, y > 0

(c) Gale’s Theorem. Exactly one of the following systems has a solution:

(i) Ax ≤ b
(ii) yTA = 0, yTb < 0, y ≥ 0

2. Given that the dual of a linear program

minimize cTx
subject to Ax = b

x ≥ 0

in standard form is
maximize yTb
subject to yTA ≤ cT

(y free)
,

develop an appropriate dual for each of the following LPs:



(a)
maximize cTx
subject to Ax = b

x ≥ 0

(b)
minimize cTx
subject to Ax ≥ b

x ≥ 0

(c)
minimize cTx
subject to Ax = b

Āx ≥ b̄
x ≥ 0

3. Consider the auction problem in Lecture note #4. The LP pricing problem
has an objective

πTx− z

where the scalar
z = max[Ax]

is the maximum number of contracts among all states (recall that Ax ∈ Rm is a vector
representing the number of contracts in each state). Thus, z represents the worst-
case payback amount. Now assuming that the auction organizer knows the discrete
probability distribution, say v ∈ Rm

+ , for each state to win. Then the expected payback
amount would be (

n∑
i=1

vi · [Ax]i

)
= vTAx

Develop an LP model to decide the contract award vector x and to price each state
using the expected payback rather than the worst-case payback, that is, using the
objective function

πTx− vTAx

in the LP setting. How to solve the problem faster? Moreover, explain the price
properties using duality and/or complementarity.

4. Strict Complementarity Theorem:

• Read the proof of the strict complementarity theorem for the LP standard form
in Lecture note #3.
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• Consider the LP problem

(LP ) maximize cTx =
∑n

j=1 cjxj
subject to

∑n
j=1 ajxj = Ax ≤ b, 0 ≤ x ≤ e;

where data A ∈ Rm×n, aj ∈ Rm, c ∈ Rn, b ∈ Rm and e is the vector of all
ones, and variables x ∈ Rn. You may interpret this is a linear program to sell
the items of inventory b to n customers such that the revenue is maximized.

Suppose the problem is feasible and bounded.

1. Write down the dual of the problem. What are the interpretations of the
dual price vector associated with the constraints Ax ≤ b and the dual
price vector associated with the constraints x ≤ e) ?

2. What properties does a strictly complementary solution have for this linear
program pair?

3. Suppose the linear program pair has a strictly complementary primal so-
lution x∗ such that x∗j = 0 or x∗j = 1 for all j, and let y∗ be a strictly
complementary dual price vector associated with the constraints Ax ≤ b.
Now consider a on-line linear program where customer (cj, aj) comes se-
quentially, and the seller have to make a decision xj = 0 or xj = 1 as soon
as the customer arrives. Prove that the following mechanism or decision
rule, given y∗ being known, is optimal: If cj > aT

j y
∗ then set xj = 1;

otherwise, set xj = 0.

5. Consider a system of m linear equations in n nonnegative variables, say

Ax = b, x ≥ 0.

Assume the right-hand side vector b is nonnegative. Now consider the (related) linear
program

minimize eTy

subject to Ax + Iy = b

x ≥ 0, y ≥ 0

where e is the m-vector of all ones, and I is the m×m identity matrix. This linear
program is called a Phase One Problem.

(a) Write the dual of the Phase One Problem.

(b) Show that the Phase One Problem always has a basic feasible solution.
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(c) Using theorems proved in class, show that the Phase One Problem always has an
optimal solution.

(d) Write the complementary slackness conditions for the Phase One Problem.

(e) Prove that {x : Ax = b, x ≥ 0} 6= ∅ if and only if the optimal value of the
objective function in the corresponding Phase One Problem is zero.

6. Exercise 3.8-8 of of L&Y.

7. Exercise 3.8-11 of of L&Y.

8. Let A be an m by n matrix and let b be a vector in Rm. We consider the
problem of minimizing ‖Ax−b‖∞ over all x ∈ Rn. Let v be the value of the optimal
cost.

(a) Let p be any vector in Rm that satisfies ‖p‖1 =
∑m

i=1 |pi| ≤ 1 and ATp = 0. Show
that bTp ≤ v

(b) In order to obtain the best possible lower bound of the form considered in part
(a), we form the linear programming problem

maximize bTp

subject to ATp = 0

‖p‖1 ≤ 1.

Show that the optimal cost on this problem is equal to v.

9. Prove that BFS is an extreme point of the feasible region in the LP standard
primal form.

10. Prove for the MDP problem described in Lecture note #7, every BFS of
the primal MDP problems would be a policy, that is, it contains exactly one basic
variable from each state, and every policy represents a BFS. Moreover, prove Lemma
2 on page 25.
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