
MS&E 310 Homework #1 Solution
Linear Programming

HOMEWORK ASSIGNMENT 1 SOLUTION

1.

xi: number of shares of security i purchased.

1.

max s− 0.75x1 − 0.35x2 − 0.4x3 − 0.95x4 − 0.75x5

s.t. s− x1 − x3 − x4 ≤ 0

s− x1 − x4 − x5 ≤ 0

s− x1 − x3 − x4 ≤ 0

s− x2 − x4 − x5 ≤ 0

s− x3 ≤ 0

x1 ≤ 10, x2 ≤ 5, x3 ≤ 10

x4 ≤ 10, x5 ≤ 5

xi ≥ 0 ∀i
s free

2.

max s− 0.75x1 − 0.35x2 − 0.4x3 − 0.95x4 − 0.75x5

s.t. s− x1 − x3 − x4 ≤ 0

s− x1 − x4 − x5 ≤ 0

s− x1 − x3 − x4 ≤ 0

s− x2 − x4 − x5 ≤ 0

s− x3 ≤ 0

x, s free

2. Exercise 2.8-9.



Similar to the technique we use for absolute values, we can formulate the problem
as follows.

min z

s.t. cTi x+ di ≤ z, 1 ≤ i ≤ p

Ax = b

x ≥ 0.

3. Exercise 2.8-10.

Define xi to be the amount of units produced in the ith month; yi to be the storage
from month i to month i+1. And zi = (xi−r)+. Then we can formulate the problem
as follows:

min
∑n

i=1{syi + bxi + (c− b)zi}
s.t. xi + yi−1 − di = yi, 1 ≤ i ≤ n,

y0 = yn = 0,

zi ≥ xi − r, 1 ≤ i ≤ n,

xi, yi, zi ≥ 0.

4. Exercise 2.8-13.

Consider the following system about variable z:

Az = b

cT z = cTx

z ≥ 0

Obviously, x is a feasible solution of this system. And Rank

(
A
cT

)
≤ m+ 1. Thus

we know the system must have a basic feasible solution. Assume it is y. Then the
solution y satisfies the requirement.

5. Exercise 2.8-16.

Define S(∈ En+m) to be the set of the feasible solutions to the second system.
Then S = {(x, y)|Ax + y = b, x ≥ 0, y ≥ 0}. Define S(∈ En) to be the set of the
feasible solutions to the first system, then S∗ = {x|Ax ≤ b, x ≥ 0}.

We consider the projection T from S to S∗: T (x, y) = x. It is linear. Noticing that
for each (x, y) ∈ S, y is uniquely determined once x is fixed, it is not hard to prove T
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is a one-to-one correspondence. Then we show that T is a one-to-one correspondence
between extreme points of S and S∗.

For any extreme point x ∈ S, we prove x∗ = T (x) is also an extreme point in S∗.
Otherwise, x∗ = ay∗ + (1 − a)z∗, y∗, z∗ ∈ S∗, y∗ 6= z∗, 0 < a < 1. Then, there must
exist different y, z ∈ S, such that x = ay + (1− a)z. Therefore, x is not an extreme
point, which contradicts with the assumption. So T (x) must be an extreme point in
S∗. Similarly, we can prove if x∗ is an extreme point in S∗, then its corresponding
point in S must be an extreme point too.

6.

(a) Omitted.

(b)
Extreme Point Defining Equations
O : (0, 0) x1 = x2 = 0
A : (0, 2.5) x1 = x3 = 0
B : (0.5, 3) x3 = x6 = 0
C : (3, 3) x4 = x6 = 0
D : (4, 2.5) x4 = x5 = 0
E : (4, 0) x2 = x5 = 0

(c)
From to Increasing
O A x2
A B x1
B C x3
C D x6
D E x4
E O x5
O E x1
E D x2
D C x5
C B x4
B A x6
A O x3

7.

1. True: The set P lies in a set defined by m = n − 1 linearly independent con-
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straints, that is, of an one–dimensional affine subspace. Hence, every solution
x of Ax = b is of the form x = x0 + λx1 for some scalar λ, where x0 is a point
in P and x1 is some nonzero directional vector. Thus, P is constrained to lie
on a line and cannot have more than two extreme points.

2. False: Consider min x1 s.t. x1 = 1, (x1;x2) ≥ 0. The optimal solution set is
unbounded.

3. False: Consider a linear program where c = 0. Then any feasible solution is
optimal, no matter how many positive components it has.

4. True: If x and y are optimal, then so is any convex combination of them; thus,
the optimal solution set is convex.

5. False: Consider min x1 s.t. x1 = 0, (x1;x2) ≥ 0. The optimal solution set is
{(0;x2) : x2 ≥ 0}. It has only one optimal basic feasible solution.

6. False: Consider min |x1 − 0.5| s.t. x1 + x2 = 1, (x1;x2) ≥ 0. Note that:

|x1 − 0.5| = max{x1 − 0.5, 0.5− x1}

The optimal solution is (0.5; 0.5) and it is unique; and it is not an extreme
point.

8.

1. For any c1, c2 ∈ Rn, consider

Z1 := min (λc1 + (1− λ)c2)
Tx

s.t. Ax = b

x ∈ K
(1)

Z2 := min λcT1 x1 + (1− λ)cT2 x2

s.t. Ax1 = b

Ax2 = b

x1, x2 ∈ K

(2)

Since every feasible solution to (1) is also feasible to (2) and has the same
objective function value, Z1 ≥ Z2. Hence,

z(λc1 + (1− λ)c2) = Z1 ≥ Z2 = λz(c1) + (1− λ)z(c2).
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2. c = (c1, c2, · · · , cn)T . WLOG, assume c1 ≤ c2 ≤ · · · ≤ cn. Then the optimal
solution x∗ =

∑k
i=1 ei, where ei ∈ Rn is the unit vector in ith coordinate.

Otherwise, ∃i ≤ k, j > k, such that xi < 1, xj > 0. By replacing x′i = 1,
x′j = xi + xj − 1, the value of the objective function decreases, a contradiction!

3. Let t1, t2 > 0. For any given 0 ≤ α ≤ 1, we have

f

(
αx1 + (1− α)x2

αt1 + (1− α)t2

)
= f

(
αt1 · (x1/t1) + (1− α)t2 · (x2/t2)

αt1 + (1− α)t2

)
= f

(
αt1

αt1 + (1− α)t2
· x

1

t1
+

(1− α)t2

αt1 + (1− α)t2
· x

2

t2

)
≤ αt1

αt1 + (1− α)t2
· f(x1/t1) +

(1− α)t2

αt1 + (1− α)t2
· f(x2/t2).

Here, we used the convexity of f and

αt1

αt1 + (1− α)t2
+

(1− α)t2

αt1 + (1− α)t2
= 1

and each of them is non-negative.

Thus,

(αt1 + (1− α)t2) · f
(
αx1 + (1− α)x2

αt1 + (1− α)t2

)
≤ αt1 · f(x1/t1) + (1− α)t2 · f(x2/t2),

that is, t · f(x/t) is convex by definition.

9. We show that the optimal solution of y∗ = (y∗1, ...,y
∗
m) satisfy

y∗i = min
j∈Ai

{cj + γpjy
∗}

for all i. If there exists i such that

y∗i < min
j∈Ai

{cj + γpjy
∗}.

Then, let
y′i = min

j∈Ai

{cj + γpjy
∗}

and y′k = y∗k for all k 6= i. Then, y′ = (y′1, ..., y
′
m) satisfies the constraints but achieves

a larger objective value. This contradicts the optimality of y∗.
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