HOMEWORK ASSIGNMENT 1 SOLUTION

1.

x_{i} : number of shares of security i purchased.
1.

$$
\begin{array}{cc}
\max & s-0.75 x_{1}-0.35 x_{2}-0.4 x_{3}-0.95 x_{4}-0.75 x_{5} \\
\text { s.t. } & s-x_{1}-x_{3}-x_{4} \leq 0 \\
s-x_{1}-x_{4}-x_{5} \leq 0 \\
s-x_{1}-x_{3}-x_{4} \leq 0 \\
s-x_{2}-x_{4}-x_{5} \leq 0 \\
s-x_{3} \leq 0 \\
& x_{1} \leq 10, x_{2} \leq 5, x_{3} \leq 10 \\
x_{4} \leq 10, x_{5} \leq 5 \\
x_{i} \geq 0 \forall i \\
s & \text { free }
\end{array}
$$

2.

$$
\begin{array}{cc}
\max & s-0.75 x_{1}-0.35 x_{2}-0.4 x_{3}-0.95 x_{4}-0.75 x_{5} \\
\text { s.t. } & s-x_{1}-x_{3}-x_{4} \leq 0 \\
& s-x_{1}-x_{4}-x_{5} \leq 0 \\
s-x_{1}-x_{3}-x_{4} \leq 0 \\
& s-x_{2}-x_{4}-x_{5} \leq 0 \\
s-x_{3} \leq 0 \\
& x, s \text { free }
\end{array}
$$

2. Exercise 2.8-9.

Similar to the technique we use for absolute values, we can formulate the problem as follows.

$$
\begin{array}{cc}
\min & z \\
\text { s.t. } & c_{i}^{T} x+d_{i} \leq z, 1 \leq i \leq p \\
& A x=b \\
& x \geq 0
\end{array}
$$

3. Exercise 2.8-10.

Define x_{i} to be the amount of units produced in the i th month; y_{i} to be the storage from month i to month $i+1$. And $z_{i}=\left(x_{i}-r\right)^{+}$. Then we can formulate the problem as follows:

$$
\begin{array}{ccc}
\min & \sum_{i=1}^{n}\left\{s y_{i}+b x_{i}+(c-b) z_{i}\right\} & \\
\text { s.t. } & x_{i}+y_{i-1}-d_{i}=y_{i}, & 1 \leq i \leq n, \\
& y_{0}=y_{n}=0, & \\
& z_{i} \geq x_{i}-r, & 1 \leq i \leq n, \\
& x_{i}, y_{i}, z_{i} \geq 0 . &
\end{array}
$$

4. Exercise 2.8-13.

Consider the following system about variable z :

$$
\begin{gathered}
A z=b \\
c^{T} z=c^{T} x \\
z \geq 0
\end{gathered}
$$

Obviously, x is a feasible solution of this system. And $\operatorname{Rank}\binom{A}{c^{T}} \leq m+1$. Thus we know the system must have a basic feasible solution. Assume it is y. Then the solution y satisfies the requirement.

5. Exercise 2.8-16.

Define $S\left(\in E^{n+m}\right)$ to be the set of the feasible solutions to the second system. Then $S=\{(x, y) \mid A x+y=b, x \geq 0, y \geq 0\}$. Define $S\left(\in E^{n}\right)$ to be the set of the feasible solutions to the first system, then $S^{*}=\{x \mid A x \leq b, x \geq 0\}$.

We consider the projection T from S to $S^{*}: T(x, y)=x$. It is linear. Noticing that for each $(x, y) \in S, y$ is uniquely determined once x is fixed, it is not hard to prove T
is a one-to-one correspondence. Then we show that T is a one-to-one correspondence between extreme points of S and S^{*}.

For any extreme point $x \in S$, we prove $x^{*}=T(x)$ is also an extreme point in S^{*}. Otherwise, $x^{*}=a y^{*}+(1-a) z^{*}, y^{*}, z^{*} \in S^{*}, y^{*} \neq z^{*}, 0<a<1$. Then, there must exist different $y, z \in S$, such that $x=a y+(1-a) z$. Therefore, x is not an extreme point, which contradicts with the assumption. So $T(x)$ must be an extreme point in S^{*}. Similarly, we can prove if x^{*} is an extreme point in S^{*}, then its corresponding point in S must be an extreme point too.

6.

(a) Omitted.
(b)

Extreme Point	Defining Equations
$O:(0,0)$	$x_{1}=x_{2}=0$
$A:(0,2.5)$	$x_{1}=x_{3}=0$
$B:(0.5,3)$	$x_{3}=x_{6}=0$
$C:(3,3)$	$x_{4}=x_{6}=0$
$D:(4,2.5)$	$x_{4}=x_{5}=0$
$E:(4,0)$	$x_{2}=x_{5}=0$

(c)

From	to	Increasing
O	A	x_{2}
A	B	x_{1}
B	C	x_{3}
C	D	x_{6}
D	E	x_{4}
E	O	x_{5}
O	E	x_{1}
E	D	x_{2}
D	C	x_{5}
C	B	x_{4}
B	A	x_{6}
A	O	x_{3}

7.
8. True: The set P lies in a set defined by $m=n-1$ linearly independent con-
straints, that is, of an one-dimensional affine subspace. Hence, every solution x of $A x=b$ is of the form $x=x^{0}+\lambda x^{1}$ for some scalar λ, where x^{0} is a point in P and x^{1} is some nonzero directional vector. Thus, P is constrained to lie on a line and cannot have more than two extreme points.
9. False: Consider $\min x_{1}$ s.t. $x_{1}=1,\left(x_{1} ; x_{2}\right) \geq 0$. The optimal solution set is unbounded.
10. False: Consider a linear program where $c=0$. Then any feasible solution is optimal, no matter how many positive components it has.
11. True: If x and y are optimal, then so is any convex combination of them; thus, the optimal solution set is convex.
12. False: Consider min x_{1} s.t. $x_{1}=0,\left(x_{1} ; x_{2}\right) \geq 0$. The optimal solution set is $\left\{\left(0 ; x_{2}\right): x_{2} \geq 0\right\}$. It has only one optimal basic feasible solution.
13. False: Consider min $\left|x_{1}-0.5\right|$ s.t. $x_{1}+x_{2}=1,\left(x_{1} ; x_{2}\right) \geq 0$. Note that:

$$
\left|x_{1}-0.5\right|=\max \left\{x_{1}-0.5,0.5-x_{1}\right\}
$$

The optimal solution is $(0.5 ; 0.5)$ and it is unique; and it is not an extreme point.

8.

1. For any $c_{1}, c_{2} \in R^{n}$, consider

$$
\begin{align*}
Z_{1}:=\min (& \left.\lambda c_{1}+(1-\lambda) c_{2}\right)^{T} x \\
& \text { s.t. } A x=b \tag{1}\\
& x \in K \\
Z_{2}:=\min & \lambda c_{1}^{T} x_{1}+(1-\lambda) c_{2}^{T} x_{2} \\
& \text { s.t. } A x_{1}=b \\
& A x_{2}=b \tag{2}\\
& x_{1}, x_{2} \in K
\end{align*}
$$

Since every feasible solution to (1) is also feasible to (2) and has the same objective function value, $Z_{1} \geq Z_{2}$. Hence,

$$
z\left(\lambda c_{1}+(1-\lambda) c_{2}\right)=Z_{1} \geq Z_{2}=\lambda z\left(c_{1}\right)+(1-\lambda) z\left(c_{2}\right)
$$

2. $\mathbf{c}=\left(c_{1}, c_{2}, \cdots, c_{n}\right)^{T}$. WLOG, assume $c_{1} \leq c_{2} \leq \cdots \leq c_{n}$. Then the optimal solution $x^{*}=\sum_{i=1}^{k} e_{i}$, where $e_{i} \in R^{n}$ is the unit vector in i th coordinate. Otherwise, $\exists i \leq k, j>k$, such that $x_{i}<1, x_{j}>0$. By replacing $x_{i}^{\prime}=1$, $x_{j}^{\prime}=x_{i}+x_{j}-1$, the value of the objective function decreases, a contradiction!
3. Let $t^{1}, t^{2}>0$. For any given $0 \leq \alpha \leq 1$, we have

$$
\begin{aligned}
f\left(\frac{\alpha x^{1}+(1-\alpha) x^{2}}{\alpha t^{1}+(1-\alpha) t^{2}}\right) & =f\left(\frac{\alpha t^{1} \cdot\left(x^{1} / t^{1}\right)+(1-\alpha) t^{2} \cdot\left(x^{2} / t^{2}\right)}{\alpha t^{1}+(1-\alpha) t^{2}}\right) \\
& =f\left(\frac{\alpha t^{1}}{\alpha t^{1}+(1-\alpha) t^{2}} \cdot \frac{x^{1}}{t^{1}}+\frac{(1-\alpha) t^{2}}{\alpha t^{1}+(1-\alpha) t^{2}} \cdot \frac{x^{2}}{t^{2}}\right) \\
& \leq \frac{\alpha t^{1}}{\alpha t^{1}+(1-\alpha) t^{2}} \cdot f\left(x^{1} / t^{1}\right)+\frac{(1-\alpha) t^{2}}{\alpha t^{1}+(1-\alpha) t^{2}} \cdot f\left(x^{2} / t^{2}\right)
\end{aligned}
$$

Here, we used the convexity of f and

$$
\frac{\alpha t^{1}}{\alpha t^{1}+(1-\alpha) t^{2}}+\frac{(1-\alpha) t^{2}}{\alpha t^{1}+(1-\alpha) t^{2}}=1
$$

and each of them is non-negative.
Thus,

$$
\left(\alpha t^{1}+(1-\alpha) t^{2}\right) \cdot f\left(\frac{\alpha x^{1}+(1-\alpha) x^{2}}{\alpha t^{1}+(1-\alpha) t^{2}}\right) \leq \alpha t^{1} \cdot f\left(x^{1} / t^{1}\right)+(1-\alpha) t^{2} \cdot f\left(x^{2} / t^{2}\right)
$$

that is, $t \cdot f(x / t)$ is convex by definition.
9. We show that the optimal solution of $\mathbf{y}^{*}=\left(\mathbf{y}_{\mathbf{1}}^{*}, \ldots, \mathbf{y}_{\mathbf{m}}^{*}\right)$ satisfy

$$
y_{i}^{*}=\min _{j \in \mathcal{A}_{i}}\left\{c_{j}+\gamma \mathbf{p}_{\mathbf{j}} \mathbf{y}^{*}\right\}
$$

for all i. If there exists i such that

$$
y_{i}^{*}<\min _{j \in \mathcal{A}_{i}}\left\{c_{j}+\gamma \mathbf{p}_{\mathbf{j}} \mathbf{y}^{*}\right\} .
$$

Then, let

$$
y_{i}^{\prime}=\min _{j \in \mathcal{A}_{i}}\left\{c_{j}+\gamma \mathbf{p}_{\mathbf{j}} \mathbf{y}^{*}\right\}
$$

and $y_{k}^{\prime}=y_{k}^{*}$ for all $k \neq i$. Then, $\mathbf{y}^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{m}^{\prime}\right)$ satisfies the constraints but achieves a larger objective value. This contradicts the optimality of \mathbf{y}^{*}.

