MS&E 310 Homework #1 Solution
Linear Programming

HOMEWORK ASSIGNMENT 1 SOLUTION

1.

x;: number of shares of security ¢ purchased.

1.
max s — 0.75zy — 0.35x9 — 0.423 — 0.95x4 — 0.75x5
s.t. s—x1—T3—1x4 <0
s—x1— x4 — x5 <0
S—x1—23—x4 <0
S—Tyg—x4— 5 <0
s—x3 <0
1 < 10,29 < 5,23 <10
s < 10,25 <5
z; > 0V
s free
2.

max s — 0.75x7 — 0.3529 — 0.4253 — 0.9524 — 0.7bx5
s.t. s—x1—x3—x4 <0
S—T1— 24 —2x5 <0
S—x1—23—24 <0
S—X9g— x4 —x5 <0
s—x3<0

r,s free

2. Exercise 2.8-9.



Similar to the technique we use for absolute values, we can formulate the problem
as follows.

min z

st. cle+di<z,1<i<p
Axr =b
z > 0.

3. Exercise 2.8-10.

Define z; to be the amount of units produced in the ¢th month; y; to be the storage
from month 7 to month i+1. And z; = (x; —r)*. Then we can formulate the problem
as follows:

min Y {sy; + bx; + (c —b)z}

s.t. T + Y1 — di =y, 1<i<n,
Yo = Yn =0,
Z; 2 T — T, 1<i<mn,
Tiy Yir 2i 2 0.

4. Exercise 2.8-13.

Consider the following system about variable z:

Obviously, = is a feasible solution of this system. And Rank ( ;711 ) <m+ 1. Thus

we know the system must have a basic feasible solution. Assume it is y. Then the
solution y satisfies the requirement.

5. Exercise 2.8-16.

Define S(€ E™™) to be the set of the feasible solutions to the second system.
Then S = {(z,y)|Az +y = b,z > 0,y > 0}. Define S(€ E™) to be the set of the
feasible solutions to the first system, then S* = {z|Az < b,z > 0}.

We consider the projection 7" from S to S*: T'(z,y) = x. It is linear. Noticing that
for each (z,y) € S, y is uniquely determined once x is fixed, it is not hard to prove T
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is a one-to-one correspondence. Then we show that 7" is a one-to-one correspondence
between extreme points of S and S*.

For any extreme point z € S, we prove x* = T'(x) is also an extreme point in S*.
Otherwise, z* = ay* + (1 — a)z*, y*, 2" € S*, y* # 2*, 0 < a < 1. Then, there must
exist different y, z € S, such that x = ay + (1 — a)z. Therefore, = is not an extreme
point, which contradicts with the assumption. So T'(x) must be an extreme point in
S*. Similarly, we can prove if z* is an extreme point in S*, then its corresponding
point in S must be an extreme point too.

6.

(a) Omitted.
(b)

Extreme Point Defining Fquations

0O :(0,0) r1=22=0
A:(0,2.5) x1=x3=0
B:(0.5,3) r3 =26 =0
C:(3,3) Ty =1 =0
D: (4,25) Ty = Tj =0
E :(4,0) To=x5 =0

From to Increasing

O A T
A B T
B C T3
C D Tg
D E Tq
E O Ty
O FE T
E D T2
D C Ty
C B Ty
B A T
A O T3

7.

1. True: The set P lies in a set defined by m = n — 1 linearly independent con-



straints, that is, of an one-dimensional affine subspace. Hence, every solution
x of Ax = b is of the form x = 2° + A\z! for some scalar A\, where 2° is a point
in P and ! is some nonzero directional vector. Thus, P is constrained to lie
on a line and cannot have more than two extreme points.

2. False: Consider min x; s.t. 1 = 1, (z1;22) > 0. The optimal solution set is
unbounded.

3. False: Consider a linear program where ¢ = 0. Then any feasible solution is
optimal, no matter how many positive components it has.

4. True: If z and y are optimal, then so is any convex combination of them; thus,
the optimal solution set is convex.

5. False: Consider min x; s.t. 1 = 0, (21;22) > 0. The optimal solution set is
{(0; ) : x5 > 0}. It has only one optimal basic feasible solution.

6. False: Consider min |zq — 0.5| s.t. 1 + 22 = 1, (21;22) > 0. Note that:
|zy — 0.5] = max{z; — 0.5,0.5 — 21}

The optimal solution is (0.5;0.5) and it is unique; and it is not an extreme
point.

1. For any c1,cy € R", consider

Zy :=min (Ac; + (1 — Vo)
st. Ar =b (1)
re K

Zy :=min Aci 1 + (1 — \)ea oy

s.t. Al‘l =)
_ (2)
A(L’g =b
T1,T2 c K

Since every feasible solution to (1) is also feasible to (2) and has the same
objective function value, Z; > Z,. Hence,

Z()\Cl + (1 — )\)Cg) = Z1 Z ZQ = )\Z(Cl) + (1 — )\)Z(Cz)



2. ¢ = (c1,09,++ ,¢,)T. WLOG, assume ¢; < ¢y < -+- < ¢,. Then the optimal
solution z* = '  e;, where e; € R" is the unit vector in ith coordinate.
Otherwise, 3¢ < k,j > k, such that z; < 1, ; > 0. By replacing 2} = 1,
2 = x; + x; — 1, the value of the objective function decreases, a contradiction!

3. Let t',#* > 0. For any given 0 < o < 1, we have

; <ozx1 +(1- a)x2) _ (at1 (@ )+ (1 —a)t (wQ/tZ))

at + (1 — a)t? att + (1 — a)t?

_ at! x! (1 — Oz)tQ 7?2
n f(oztl—f—(l—a)tQ.t_1+at1+(1_a)t2't_2>
Cl{tl (1 _ Oé)t2
air—we T i ae )

Here, we used the convexity of f and

at! (1—a)t?

=1
at! + (1 — a)t? * at! + (1 — a)t?

and each of them is non-negative.

Thus,

ar' + (1 — a)z?
at! + (1 — a)t?

(at' + (1 —a)t?) - f ( ) <ath f(@'/t) + (1 —a)t® - f(a?/17),

that is, ¢ - f(x/t) is convex by definition.

9. We show that the optimal solution of y* = (y7j, ..., y5,) satisfy
y; = min{c; +p;y”}
for all 7. If there exists ¢ such that
yi < min{c; + Py}

Then, let
r_ ) -
y; = %g{c] + Py}

and y, = y; for all k # 4. Then, y' = (v, ..., y.,,) satisfies the constraints but achieves
a larger objective value. This contradicts the optimality of y*.



