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Convex Cones

• A set C is a cone if x ∈ C implies αx ∈ C for all α > 0

• A convex cone is cone plus convex-set.

• Dual cone:

C∗ := {y : y • x ≥ 0 for all x ∈ C}

−C∗ is also called the polar of C .
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Separating hyperplane theorem

The most important theorem about the convex set is the following separating theorem.

Theorem 1 (Separating hyperplane theorem) Let C ⊂ E , where E is either Rn or Mn, be a closed

convex set and let y be a point exterior to C . Then there is a vector a ∈ E such that

a • y < inf
x∈C

a • x.
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Theorem 2 (LP fundamental theorem) Given (LP) and (LD) where A has full row rank m and b ∈ Rm

and c ∈ Rn, and consider the classical LP:

(LP ) minimize cTx

subject to Ax = b, x ≥ 0,

where decision vector x ∈ Rn.

i) if there is a feasible solution, there is a basic feasible solution (Carathéodory’s theorem);

ii) if there is an optimal solution, there is an optimal basic solution.

Basic Solution: select m linearly independent columns, denoted by the index set B, from A, and solve

ABxB = b

to determine the m-vector xB . By setting the variables, xN , of x corresponding to the remaining

columns of A equal to zeros. If xB ≥ 0, then it is a basic feasible solution (BFS).
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Farkas’ Lemma

The following results are Farkas’ lemma and its variants.

Theorem 3 The system {x : Ax = b, x ≥ 0} has a feasible solution x if and only if there is no y to

satisfy −ATy ≥ 0 and bTy > 0.

A vector y, with −ATy ≥ 0 and bTy > 0, is called a (primal) infeasibility certificate for the system

{x : Ax = b, x ≥ 0}. Geometrically, Farkas’ lemma means that if a vector b ∈ Rm does not belong

to the cone generated by a.1, ...,a.n, then there is a hyperplane separating b from cone(a.1, ...,a.n).

Theorem 4 Let C be a (pointed) closed convex cone. Then, the system {x : Ax = b, x ∈ C} has a

feasible solution x if and only if there is no y to satisfy −ATy ∈ C∗ and bTy > 0, provided that there

is y such that −ATy ∈ intC∗.
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Duality Theory

Consider the linear program in standard form, called the primal problem,

(LP ) minimize cTx

subject to Ax = b, x ≥ 0,

where x ∈ Rn.

The dual problem can be written as:

(LD) maximize bTy

subject to ATy + s = c, s ≥ 0,

where y ∈ Rm and s ∈ Rn. The components of s are called dual slacks.
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Duality Theory

Theorem 5 (Weak duality theorem) Let Fp and Fd be non-empty. Then,

cTx ≥ bTy where x ∈ Fp, (y, s) ∈ Fd.

cTx− bTy = cTx− (Ax)Ty = xT (c−ATy) = xT s ≥ 0.

This theorem shows that a feasible solution to either problem yields a bound on the value of the other

problem. We call cTx− bTy the duality gap.

From this we have important results in the following.
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Theorem 6 (LP Strong Duality Theorem) Let Fp and Fd be non-empty. Then, x∗ is optimal for (LP) and

(y∗, s∗) is optimal for (LD) if any only if

c • x∗ = bTy∗.

If one of (LP) or (LD) is unbounded then the other has no feasible solution. If one of (LP) or (LD) has no

feasible solution, then the other is either unbounded or has no feasible solution.

Theorem 7 (CLP Strong Duality Theorem) Let Fp and Fd be non-empty and at least one of them has an

interior. Then, x∗ is optimal for (CLP) and (y∗, s∗) is optimal for (CLD) if any only if

c • x∗ = bTy∗.

There are cases that the duality gap tends to zero but the optimal solution is not attainable.
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Complementarity

For feasible x and (y, s) of LP, xT s = xT (c−ATy) = cTx− bTy is also called the

complementarity gap. Note that xT s = 0 implies that xjsj = 0 for all j = 1, . . . , n.

xjsj = 0, ∀j
Ax = b

−ATy − s = −c

x ≥ 0 , s ≥ 0.

For SDP:

Xi · Sj = 0, ∀i, j
AX = b

−ATy − S = −C
X ≽ 0 , S ≽ 0.

where Xi (or Si) is the ith column of X (or S).
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Rules to construct the dual

obj. coef. vector right-hand-side

right-hand-side obj. coef. vector

A AT

Max model Min model

xj ≥ 0 jth constraint ≥
xj ≤ 0 jth constraint ≤
xj free jth constraint =

ith constraint ≤ yi ≥ 0

ith constraint ≥ yi ≤ 0

ith constraint = yi free
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Duality Example

Consider the combinatorial call auction market discussed in the class. This time, the market maker forms

the decision problem as:

max
∑n

j=1 xj

s.t. Ax− e · y ≤ 0, (p)

−πTx+ α · y ≤ 0, (λ)

x ≤ q, (µ)

x ≥ 0,

where (πj ,aj , qj) are as defined as in our auction problem through out this course, e is the vector of all

ones, and parameter α ≥ 0. Again, the bidder wins one dollar if the winning state is in his or her selection.
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Dual Basic Feasible Solution

For every basis B, a dual vector y satisfying

AT
By = cB

is said to be the corresponding dual basic solution.

If the dual basic solution is also feasible, that is

s = c−ATy ≥ 0.

If one or more slacks in cN −AT
Ny has value zero, that dual basic feasible solution y is said to be (dual)

degenerate.
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The Simplex Algorithm

0. Initialize with a minimization problem in feasible canonical form with respect to a basic index set B. Let

N denote the complementary index set.

1. Test for termination: first find

re = minj∈N{rj}.

If re ≥ 0, stop. The solution is optimal. Otherwise determine whether the column of Ā.e contains a

positive entry. If not, the objective function is unbounded below. Terminate. Let xe be the entering

basic variable.

2. Determine the outgoing: execute the MRT to determine the outgoing variable xo.

3. Update basis: update B and AB and transform the problem to canonical form and return to Step 1.
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The Ellipsoid Method

The basic ideas of the ellipsoid method stem from research done in the nineteen sixties and seventies

mainly in the Soviet Union (as it was then called) by others who preceded Khachiyan. The idea in a

nutshell is to enclose the region of interest in each member of a sequence of ellipsoids whose size is

decreasing, resembling the bisection method.

The significant contribution of Khachiyan was to demonstrate in two papers—published in 1979 and

1980—that under certain assumptions, the ellipsoid method constitutes a polynomially bounded algorithm

for linear programming.
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Figure 1: The least volume ellipsoid containing a half ellipsoid
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Desired Theoretical Properties

• Separation Problem: Either decide the ellipsoid center yc ∈ P , where P is the target set, or find a

separating hyperplane a such that aTy ≤ aTyc for all y ∈ P .

• Oracle to generate a without enumerating all hyperplanes.

Theorem 8 If the separating (oracle) problem can be solved in polynomial time of m and log(R/r), then

we can solve the standard linear programming problem whose running time is polynomial in m and

log(R/r) that is independent of n, the number of inequality constraints.
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The Methodology Concept of Centers

Consider linear program

maximize bTy

subject to ATy ≤ c.

Consider an objective level set

Y (z0) := {y : ATy ≤ c, bTy ≥ z0},

and assume that it is bounded and has an interior.

Compute a “center”, y0, of the level set Y (z0), then move the objective hyperplane through y0, and now

consider the smaller level set

Y (z1) := {y : ATy ≤ c, bTy ≥ z1 = bTy0}

and repeat this process.
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Figure 2: Cur ot translation of a hyperplane through the center.
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Analytic Center for the Polytope

One choice of center is the one to maximize the barrier function over the level set:

maximize log s0 +
∑

j log sj

subject to ATy + s = c,

bTy − s0 = z0.
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S1

S2

S3

S4

S5

Figure 3: Analytic center maximizes the product of slacks.
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LP with Barrier Function

Consider the LP problem with the barrier function

(LPB) minimize cTx− µ
∑n

j=1 log xj

s.t. x ∈ intFp

and

(LDB) maximize bTy −
∑n

j=1 log sj

s.t. (y, s) ∈ intFd,

where µ is called the barrier (weight) parameter.

They are again linearly constrained convex programs (LCCP).
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Common Optimality Conditions for LPB and LDB

Xs = µe

Ax = b

−ATy − s = −c;

where we have

µ =
xT s

n
=

cTx− bTy

n
,

so that it’s the average of complementarity or duality gap.
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Figure 4: The central path of y(µ) in a dual feasible region.
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Central Path for Linear Programming

The path

C = {(x(µ),y(µ), s(µ)) ∈ intF : Xs = µe, 0 < µ <∞} ;

is called the (primal and dual) central path of linear programming.

Theorem 9 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c). Then for

any 0 < µ <∞, the central path point pair (x(µ),y(µ), s(µ)) exists and is unique.
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Potential Function for Linear Programming

For x ∈ intFp and (y, s) ∈ intFd, the primal-dual potential function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑

j=1

log(xjsj),

where ρ ≥ 0.

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n log n,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).
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Primal-Dual Potential Reduction Algorithm for LP

Once we have a pair (x,y, s) ∈ intF with µ = xT s/n, we can generate a new iterate x+ and

(y+, s+) by solving for dx, dy and ds from the system of linear equations:

Sdx +Xds = r := xT s
n+ρe−Xs,

Adx = 0,

−ATdy − ds = 0.

(1)

Let d := (dx,dy,ds). To show the dependence of d on the current pair (x, s) and the parameter γ, we

write d = d(x, s, γ). Note that dT
xds = −dT

xA
Tdy = 0 here. Th results still hold even if dT

xds ≥ 0.
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Lemma 1 Let the direction d = (dx,dy,ds) be generated by equation (1), and let

θ =
α
√
min(Xs)

∥(XS)−1/2( xT s
(n+ρ)e−Xs)∥

, (2)

where α is a positive constant less than 1. Let

x+ = x+ θdx, y+ = y + θdy, and s+ = s+ θds.

Then, we have (x+,y+, s+) ∈ intF and

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√

min(Xs)∥(XS)−1/2(e− (n+ ρ)

xT s
Xs)∥+ α2

2(1− α)
.
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption concerning the existence

of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big M penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and

optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an

infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems

A pair of LP has two alternatives

(Solvable) Ax− b = 0

−ATy + c ≥ 0,

bTy − cTx = 0,

y free, x ≥ 0

or

(Infeasible) Ax = 0

−ATy ≥ 0,

bTy − cTx > 0,

y free, x ≥ 0
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An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

(HP ) Ax− bτ = 0

−ATy + cτ = s ≥ 0,

bTy − cTx = κ ≥ 0,

y free, (x; τ) ≥ 0

where the two alternatives are

(Solvable) : (τ > 0, κ = 0) or (Infeasible) : (τ = 0, κ > 0)
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A HSD linear program

Let’s try to add one more constraint to prevent the all-zero solution

(HSDP ) min (n+ 1)θ

s.t. Ax −bτ +b̄θ = 0,

−ATy +cτ −c̄θ ≥ 0,

bTy −cTx +z̄θ ≥ 0,

−b̄Ty +c̄Tx −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free.

Note that the constraints of (HSDP) form a skew-symmetric system and the objective coeffcient vector is

the negative of the right-hand-side vector, so that it remains a self-dual linear program.

(y = 0, x = e, τ = 1, θ = 1) is a strictly feasible point for (HSDP).
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The Augmented Lagrangian Function

But the above method still to find the null space of matrix A. One way to remove it is to construct an

augmented Lagrangian function. In general consider

min f(x) s.t. Ax = b, x ∈ X .

Let y be a temporary multipliers of the equality constraints. Then, the augmented Lagrangian function is

L(x,y) = f(x)− yT (Ax− b) +
β

2
∥Ax− b∥2, x ∈ X .

Then, the iterative method would be, starting from a pair of (x0,y0),

xk+1 = argmin
x∈X

L(x,yk) and yk+1 = yk − β(Axk+1 − b).

For LP, f(x) = cTx and X = {x : x ≥ 0}. Furthermore, by adding the barrier, we can consider

f(x) = cTx− µ
∑
j

log(xj),

for some small µ so that x is free.
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Alternating Direction Method of Multipliers

The update of x still needs to inverse a large matrix. Let us split the x variables into two blocks, and

consider

min {f1(x1) + f2(x2) | A1x1 +A2x2 = b, x1 ∈ X1,x2 ∈ X2.}

where f1(x1) and f2(x2) are convex closed proper functions.

The Original ADMM (Glowinski & Marrocco ’75, Gabay & Mercier ’76) is provably working:
xk+1
1 = argmin{L(x1,x

k
2 ,y

k) |x1 ∈ X1},

xk+1
2 = argmin{L(xk+1

1 ,x2,y
k) |x2 ∈ X2},

yk+1 = yk − β(A1x
k+1
1 +A2x

k+1
2 − b),

where the augmented Lagrangian function L is defined as

L(x1,x2,y) =

2∑
i=1

fi(xi)− yT ( 2∑
i=1

Aixi − b
)
+

β

2

∥∥ 2∑
i=1

Aixi − b
∥∥2

.
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Conic Linear Programming

(CLP ) Minimize cTx+ C •X
subject to aTi x+Ai •X = bi, i = 1, 2, ...,m,

x ∈ K1, X ∈ K2.

The dual problem to (CLP) can be written as:

(CLD) Maximize bTy

subject to
∑m

i yiai + s = c, s ∈ K∗
1 ,∑m

i yiAi + S = C, S ∈ K∗
2 .
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Convex Cone Example

K K∗

Rn 0

Rn
+ Rn

+

SOC SOC

SDP SDP

p-norm cone q-norm cone
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