
Resolution of degeneracy using Bland’s rule

The pivot selection rule of R.G. Bland is easily stated.1 It is a double least-index
rule consisting of the following two parts:

(i) Among all candidates for the entering column (i.e., those with c̄j < 0), choose
the one with the smallest index, say s.

(ii) Among all rows i for which the minimum ratio test results in a tie, choose the
row r for which the corresponding basic variable has the smallest index, jr.

Note that in (ii), the number r itself need not be smallest row number among all
those rows involved in a tie. It is the index of the associated basic variable that is
the smallest among all such indices. Thus, with

s = argmin{j : c̄j < 0}

we define r by the condition

jr = min

{
ji : i ∈ argmin

{
b̄i

āis

: āis > 0

}}
.

Theorem. Under Bland’s Pivot Selection Rule, the Simplex Algorithm cannot
cycle.

Proof. The argument is complicated, yet very elementary. For the most part, the
development given below follows the one used by Bland. Let x0 denote −z. We think
of the initial data as being expressed in a tableau of m + 1 rows and n + 2 columns
which we write as

A =

[
1 cT 0
0 A b

]
.

One row (the 0th, A0.) and column (the 0th, A.0) pertain the variable x0 we wish
to optimize. The column indexed by n + 1 is the right-hand side of the system of
equations (augmented by an equation for the objective function).

Let Ā denote the first n + 1 columns of A, i.e., with column A.n+1 deleted.
Analogous notations will be used for pivotal transforms of Ā.

1Bland’s rule relies on the existence of a linear ordering of the indices used. When the indices are
numerical, for example i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}, this is not a problem. When the indices
are alphanumerical, then a lexicographic (dictionary) ordering can be used.
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Now if cycling occurs, there is a set τ of indices j ∈ {1, . . . , n} such that xj

becomes basic during cycling. Clearly τ has only a finite number of elements, so it
has a largest element which we denote by q. Let A′ denote the tableau that first
specifies q as the pivot column. This means that xq becomes a basic variable in the
next tableau.

Let y = (y0, y1, . . . , yn) = Ā′
0.. By virtue of the definition of q and the rule that

results in the choice of q, we have

y0 = 1, yj ≥ 0 1 ≤ j < q, yq < 0. (1)

Note that the (n+1)-vector y belongs to the row space of Ā. Now xq must also leave
the basis at some tableau A′′. Let xq = xjr , and let t denote the pivot column when
xq becomes nonbasic. Define the (n + 1)-vector v = (v0, v1, . . . , vn) as follows:

vji
= ā′′it i = 0, 1, . . . ,m, vt = −1, vj = 0 else. (2)

Note that v0 = vj0 = ā′′0t < 0, vq = ā′′rt > 0, and v is in the null space of Ā. Thus,
y · v = 0, and by construction y0v0 < 0. Hence yjvj > 0 for some j ≥ 1. Since yj 6= 0,
xj must be nonbasic in A′; since vj 6= 0, then either xj is basic in A′′ or else j = t.
Accordingly, j ∈ τ , and hence j ≤ q. By the construction again, yq < 0 < vq which
implies that yqvq < 0 hence j < q.

Furthermore, (1) implies that yj > 0, so vj > 0. Next we observe that vt = −1
implies j 6= t. All these lead to the conclusion that xj is currently basic in A′′. Let
j = jp for some p. Then vj = ā′′pt > 0.

Note that during the cycling the right-hand-side vector b̄ does not change and the
values of all variables in τ are fixed at 0. This implies b̄′′p = 0. We have established
that j = jp, ā′′pt > 0 and b̄′′p = 0. But this contradicts the assumption that xq is
removed from the basic set corresponding to tableau A′′, since j < q and by Bland’s
rule j should be removed. This means that cycling cannot occur when Bland’s Rule
is applied.

Remark. This elegant degeneracy resolution rule has the drawback that it may
result in pivot choices that do not significantly improve the objective function value.
It may also force the selection of dangerously small pivot elements.
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