Suggested MS&E310 Project 2: Simplex on GPU

$$\min c^T x = \sum_{j=1}^n c_j x_j$$

s.t.
$$a_1 x = \sum_{j=1}^n a_{1j} x_j = b_1$$

$$a_2 x = \sum_{j=1}^n a_{2j} x_j = b_2$$

• • •

$$a_m x = \sum_{j=1}^n a_{mj} x_j = b_m$$
$$x \ge 0$$

min
$$c^T x$$

s.t. $Ax = b$,
 $x > 0$

(Primal) Simplex Method

- 1. Start with a Basic Feasible Solution with basis B and compute basic variables $\mathbf{x}_B = (A_B)^{-1} \mathbf{b}(\ge \mathbf{0})$, and let non-basic variables $\mathbf{x}_N = \mathbf{0}$.
- 2. Compute **shadow price** vector: $\mathbf{y}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}}_{B}(A_{B})^{-1}$
- 3. Calculate the **reduced cost** vector for non-basic variables

$$r_N = c^T_N - y^T A_N$$

If the reduced cost for every non-basic variable is nonnegative, then STOP: OPTIMAL

- 4. Dantzig Rule: select the most negative reduced cost variable, say x_e as the entering variable with column A_e , compute $(A_B)^{-1}A_e$ and use the minimum ratio to decide the outgoing variable (row). If the min-ratio is infinity, then STOP: declare UNBOUNDED
- 5. Update new basis (*B*) matrix inverse $(A_B)^{-1}$; or perform the pivot operations to update the tableau.

Go to Step 1

Simplex Method on GPUs

- 1. Compute $\mathbf{x}_B = (A_B)^{-1} \mathbf{b}(\geq \mathbf{0})$ in $O(m^2)$ operations, and it can be done in O(m) operations and O(m) communications if rows of $(A_B)^{-1}$ are distributed on m GPUs
- 2. compute **shadow price** vector $\mathbf{y}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}}{}_{B}(A_{B})^{-1}$ in $O(m^{2})$ operations, and can be done in O(m) operations and O(m) communications if columns of $(A_{B})^{-1}$ are distributed on m GPUs.
- 3. Calculate the **reduced cost** vector for non-basic variables $\mathbf{r}_N = \mathbf{c}^T_N \mathbf{y}^T A_N$ in O(m(n-m)) operations, and can be done in O(m) operations and O(m) communications if columns of A_N are distributed on (n-m) GPUs similarly. On CPU: If the reduced cost for every non-basic variable is nonnegative, then STOP: OPTIMAL
- 4. On CPU: select the most negative reduced cost variable, say x_e as the entering variable with column A_e , compute vector $(A_B)^{-1}A_e$ in O(m) operations and O(m) communications on GPU again. Then on CPU: using the minimum ratio to decide the outgoing variable (row). If the min-ratio is infinity, then STOP: UNBOUNDED
- 5.Update new basis (*B*) and matrix inverse $(A_B)^{-1}$ in $O(m^2)$ operations, and can be done in O(m) operations and O(m) communications if rows or columns of $(A_B)^{-1}$ are distributed on *m* GPUs.