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1 Question 1
The problem can be rewritten as follows:

min - —{(3C7_ ™) + uls)}

s.t. >y ity +si = b; i=1,2,---,m X free
1'720 j:1727"'7n OCZO
$i >0 1=1,2,---'m [>0.
As such, the Lagrangian function is:
L(z,s,7,0,8) = = (O mjm;) —uls) + Y M(D_ aya; + 5 — by)
j=1 =1 j=1

= ilay = 1) =D aa; = > Bys; (2)
=1 j=1 i=1

Setting Vy sL(x, s, A, 7y, a, ) = 0 results in the conditions below:

T—ATA+y+a=0
Vu(s) = A+8=0

Ny @iy +si = b)) i=1,2,-.m 3)
Q55 j:1527"'7n
Bjs; i=1,2,---,m.

Eliminating «, 8 from the above conditions results in the following set of KKT

coinditions:

71— ATA++<0
zi(my— > Niagg +y;)  j=1,2,---.n

Vu(s) =A <0 \
vi(z; —1) j=1,2,---,n

A free,y<0,2>0,s>0
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The objective function is strictly concave. In addition, the feasibe region is
convex. As a result, the KKT conditions are sufficient for global optimality.
Proof the pricing is unique

Lemma 1. If (z1, $1) and (22, s2) are two optimal solutions to (1), then s; = ss.

Proof. Towards a contradiction, suppose $1 # $z. Define f(x,s) = —mx — u(s)
to be the objective function. Hence, f(z1,s1) = f(x2,s2).
Moroever, f(z,s) is convex. So, for 0 < o < 1:

af(xi,s1) + (1 —a)f(xe,s2) > flax; + (1 — a)ze, as; + (1 — «)s2)
=f(z1,81) > flars + (1 — )z, as1 + (1 — a)s2)
=f(x1,81) = flazr1 + (1 — a)za,as1 + (1 — a)s2) (5)

On the other hand, u(-) is strictly concave. Therefore,
au(s1) + (1 — @Ju(sz) < ulasi + (1 - a)ss)
In addition,
arzy + (1 — a)rze = w(ary + (1 — a)zs) @
Therefore,

—a(rzr +u(s1)) — (1 — a)(mze + u(s2)) > —m(ars + (1 — @)z2) — u(as: + (1 — a)s2)
= af(z1,81) + (1 —a)f(z2,s2) > flazs + (1 — @)z, as1 + (1 — a)s2)
= f(z1,81) > flazs + (1 — @)z, 81 + (1 — a)s2) (6)

But (5) and (6) contradict.
(|

Lemma 1 implies for the optimal solution (xz*, s*), s* is unique.
On the other hand, the assumption ags(f) |s;=0 = oo implies: s; > 0 for all i.

Therefore, from the KKT conditions: A = Vu(s). As a result, A is unique.

Interpretation of u(s) and s

e s: Presents the amount of resources left for future bids.

e u(s): Presents a penalty function that ensures the market maker finds an
allocation that is pari-mutual and also makes the pricing (\) unique.

2 Question 2

For each k, the problem can be rewritten as follows:
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min — ez — u(s)

s.t. aikxk—ksi:bi—qf*l 1=1,2,---,m X free
zp—1<0 Y <0 (7)
x>0 ap >0
$i >0 1=1,2,---.m [B>0.

As such, the Lagrangian function is:
Lk, $, X, Ve, e, B) = — mewr — u(s) + Z Xi(awzy + si — by + ")
i=1
—yi(zg — 1) — gy — Zﬁjsj ()

i=1
Setting Vg, sL(%k, S, Yk, ok, B) = 0 results in the conditions below:

Wk—z;il Aitik +vk +ar =0
Vu(s) = A+ B=0
)\i(aikxk—l—si—bi—l-qk*l):() i=1,2,---,m

X2

)

’yk(.’ﬂk—l)zo
akxk:O
ﬁijZO i:1,2,---,m.

Eliminating oy, 8 from the above conditions results in the following set of KKT
coinditions:

e — Doieq Nk + 7% < 0
(T — Dy Niik + k)

Vu(s) =X <0 .
Sz(ag;s)_Al):o i:1,27...,m ( )
Ye(zr —1) =0

Afreeu/yk <0,zx 20,520

The KKT conditions of the above problem are a subset of KKT conditions
of CPCAM. Moreover, the params A, s are common across the KKT conditions
for all values of k. This suggests that the (A, s) params resulting from solving
the problem for k& can be used as initial values to solve the problem for k + 1.

Another effecive method to solve the SLPM problem, which is inspired by
[1], is as follows. Basically in this approach, an LP is solved only for the first
bid (iteration). Then, the solution for every bid is used as a basis to find the
solution for the next bid using an effecient method that does not require solving
the LP.

For k > 2, suppose the solution of the problem is known for k-1 bids; in
particular, the optimal dual price p(k — 1) is known. Now the k-th bid arrives
which consists of a pair (7, ar). The algorithm handles this bid in three steps
as follows:

1. If m, < p(k — 1)T.a, then z = 0,p(k) = p(k — 1) and the algorithm is
done for the k-th bid. Otherwise, move to step 2.
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2. Set xr = 1. Examine if this can be a solution to the problem as follows.
From the feasibility constraints:

k
Zaijxj +s;,=b; Vi
j=1
=8, =b; — qf_l — Qij Vi (11)

If for any 4, s; < 0, then xzx = 0,p(k) = p(k — 1) and the algorithm is
done. Further, from the assumption ags(i') |s;=0 = o0, if for any i, s; = 0,
then = = 0,p(k) = p(k — 1) and the algorithm is done. Otherwise, set
p(k) = Vu(s) with s calculated from (11). In this case, if 74 > p(k)”.ax,
then xp = 1,p(k) = Vu(s) are the optimal solution and the algorithm is
done. Otherwise, move to step 3.

3. As a result of previous steps, 0 < z; < 1. Hence, in the KKT conditions,
vk = 0. As a result, m = p(k)T.ax. Define T = {i|(ax); = 0}. Since, for
all i, (ag); €0,1:

From the feasibility constraints, define s* such that s} = b; — qf gk
for all 4. Therefore,

Jdu(s
Z 85.)|525* = Tk
i¢T ¢

which is a nonlinear equation only in ;. By solving this equation, (x, p(k))
can be found. In particular, bisection can be used to solve this non-linear
equation. Moreover, based on the nature of u(-), the nonlinear equation
might be solvable more efficiently.

3 Question 3

Figures 1,2,3,4 present prices traces for different configuration of the SCPM
problem. The same grand truth price p, as defined below, was used for all the
configurations.

Pl =[1.7483 1.2746 1.2939 1.0666 1.4282 1.6447 1.5057 1.2919 1.9765 1.1826]

The figures indicate that the dual prices diverge monotonicaly and also fluc-
tuate. The divergent behavior occurs because of the strictly concave function
used in the objective. In particular, with each accepted bid, the dual prices
become higher. Moreover, as prices get higher, it is more likely that bids will
get rejected. As such, the curve will be flat for longer periods of iteration. The
fluctuating behavior occurs because the dual price of each iteration requires to
be consistent only with the constraints of the bid of that iteration but not the
previous ones.
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Furthermore, figures 1,2 indicate by increasing w, fluctuation in the large
scale increases while fluctuation in the small scale does not change for u;(-).

On the other hand, figures 3,4 indicate by increasing w, fluctuation in the
large scale increases while fluctuation in the small scale decreases for wus(-).
Furthermore, Figure 4(a) indicates after resources are depleted, the dual prices
heavily fluctuate which can be related to the fact that the dual prices are no
more required to be unique.

Also the figures indicate that using us will result in the dual prices to grow
much larger compared to .

4 Question 4

Figure 5 depicts revenue behavior for different values of k. Figure 5(b) indicates
as k increases, the long term revenue increases. Moreover, as k increases, the
amount of improvement in revenue decreases.

5 Question 5

The Dynamic Learning Algorithm

Figure 6 depicts the revenue for the Dynamic Learning Algorithm. Comparing
to the SPLM method, the dynamic learning algorithm has similar long term
overall revenue.

Comparison of SCPM and SLPM

Figure 7 provides the overall revenue behavior for SCPM and SLPM with dif-
ferent parameter values. As the figure indicates, at the beginning SCPM out-
putperforms SLPM but in the long run, SLPM with with all parameter values
surpasses SCPM.

Combination of SCPM and SLPM

The SLPM algorithm requires to solve an LP problem once after k bids (for some
constant k) arrive and use the resulting dual prices for decision on future bids.
I propose to add a monotone and strictly concave function to the objective, as
done in SCPM, and solve this non-linear optimization problem instead of the
LP in the SLPM algorithm. This basically combines SLPM and SCPM.

Figure 8 depicts the resulting revenue behavior for the combined algorithm
and and different values of k. Similar to Figure 5, Figure 8 indicates as k
increases, the long term revenue increases. Moreover, as k increases, the amount
of improvement in revenue decreases. On the other hand, the figures indicate
the long term revenue produced from the combined algorithm is higher than
SLPM.

6 Question 6

In this section, first the version of the problem where a monotone and strictly
concave function u(-) is added to the objective is going to be discussed. Then
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Figure 1: Dual price behavior for u; and w =1
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Figure 5: Revenue vs time for the one time learning algorithm
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Figure 6: Overall revenue for dynamic learning algorithm

the LP version of the problem (without the strictly convace function) is going
to be discussed. At the end, two online learing algorithms will be proposed and
studied. Further, to avoid notation confusion, in this section for the production
capacities we use vector b.

6.1 Problem including strictly concave objective

The problem can be rewritten as follows:

min  — (30T ) + 30, g CigkYiik — u(s)

s.t. Dok Yijk = Qi T; Vi, j M free
Zi,j Yijk + Sk = b Vk Ao free
z;—1<0 j=1,2,---.n <0
z; >0 j=12.---n a>0
s, >0 vk $120
Yijk > 0 Vi, j, k B2>0

(12)

As such, the Lagrangian function is:

L(z,y,s, A1, A2, 7, @, B1, B2) = Zﬂgilf; + > caryign —u(s) + D ()i (= Y vigk + aij;)
ij k

i,k

+Z (A2)k Zyzgk+5k_ck)

D SRTCIRTTR gy
= st
- Z(ﬁl)ksk - Z(ﬁ2)ijkyijk (13)
K ik

Setting Vs L(x, s, A1, A2, 7, &, f1, B2) = 0 results in the conditions below:

11
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Figure 7: Comparison of SLPM and SCPM
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—m; + Zi()\l)ijaij —vj—a; =0 Vj
cije — (A)ij + A2)k — (B2)ije =0 Vi, j, k
—Vu(s)+Xda— 1 =0

(A)ii Qg vige — aijxs) =0 Vi, j

(A2)k (D2 Yijk + 8k — b)) =0 Yk (14)
F)/j(xj_l) j:1527"'an

Q5T j=1,2,---,n

(B1)ksk =0 vk

(B2)ijryijr =0 Vi, j, k

Eliminating «, 81, B2 from the above conditions results in the following set of
KKT coinditions:

T — > (M)ijai; +79; <0 \Z

zj(m; — > (M)iaij +7;) Vj

Cijk — (M)ij + (M2)x >0 Vi, j, k

Yijk(Cije — (M)ij + (X2)k) =0 Vi, j, k

Vu(s) — A2 <0 (15)
si(Z82 — (Ag)p) =0 vk

’Yj(xj_l) j:1527"'7n

A1 free, Ao free,vy <0,z >0,s>0

6.1.1 Uniqueness and Non-Negativity

Analysis similar to Question 1 implies for the optimal solution (z*, y*, s*), s* is
unique. Further, assumption aau_s() s;=0 = oo implies: s; > 0 for all ¢. Therefore,
from the KKT conditions: A2 = Vu(s). As a result, A2 is unique. In addition,

since u(+) is increasing, Ay > 0.

6.1.2 Interpretation as Transportation Problem

In problem (24), the variables are x,y, s. The structure of the problem suggests
it can be divided into two layers. In particular, given x, s, then y is the solution
to the LP problem below:

v(z,s) =min >, . CijkYijk

s.t. Yok Yijk = Qi Tj Vi, j A1 free (16)
>0 Yigk + sk =cx VEk A2 free
Yijk > 0 Vi, j. k

As depicted in Figure 9, the problem above is the Transportation problem
where every pair (i, j) presents a consumer and ¢, for all k presents a supplier.
Further, in Figure 9, d; ; = a;jx;, and d* =), ¢ — Ei)j d;; presents an extra
consumer used to balance demand and supply.

The optimality condition for the above problem is:
(M)ij — (A)k < i, Vis gk (17)
Furthermore, these are the interpretations of the dual variables:

e (A1);; = unit price for consumer (i, 5)

14
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Figure 9: Transportation problem interpretation

e (—A2)r = unit price for supplier k&

The function v(z, s) defined for (16), is a convex function of (x, —s). There-
fore, v(x, s) is a convex function of (z, s). In addition sensitivity analysis of (16)
implies:

ov

E => aij(M)ij, Vi (18)
J i

0

_a; = (=X, Vk (19)

Moreover, problem (24) can be restated as follows:

max 7Tz — vz, s) +u(s)

s.t. z,s >0 (20)

So basically, the problem can be solved in two layers. In the first layer
(outer layer), the demand (x) and s are decided. Then in the second layer
(inner layer), decision is made on which suppliers to use to satisfy demand. It
should be noted that in the above problem, the first and second layer are not
completeley disconnected. In particualr, the strictly concave function imposes
A2 > 0 for the subproblem (second layer) concerning v(z, s).

6.2 Problem without concave objective

The problem is:

15
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max (2?21 TjT;) = Ei,j,k CijkYijk
s.t. Ek Yijk = Ai5T5 Vl,j )\1 free
Zi,j Yijk + Sk = b Vk Ao free
z; <1 j=12,---.n v>0 (21)
z; >0 7=12, ;N
s >0 Vk
yijk Z O Vi,j, k
Then, the dual problem is:
min b7 Ay + el
T = 22i(M)ijaij =7 <0 Vj
Cijk — ()\1)”‘ + ()\Q)k >0 V’L',j, k (22)
A2 >0
A1 free,y >0

where e is the column vector of all ones.

Similar to section 6.1.2, this problem has a Transportation problem interpreta-
tion and can be rewritten as follows:

max 7le —v(x,s) +u(s)
s.t. z,s >0

Also there is a similar connection between the outer and inner layers.

6.3 Online Algorithm 1

The proposed method below is inspired by the SLPM algorithm. Basically the
algorithm below waits for [ bids and then solves an LP problem to obtain As.
Then, for future bids this is used to make decisions. In this algorithm, there is
an assumption to have a good estimate of the total number of bids n.

The algorithm is as follows. For fixed I:
e Set x; =0 forall0 <t <I.

e Solve the problem below to obtain optimal dual solution Aa.

1 l
max (Y051 TTs) — Doy Dok CigkYijk

s.t. Zk Yijk = Q55T VZ,]Z 1,2, 7l
Sy s Vigk + sk = Ly vk
2, <1 J=1,2,-- 1
2; >0 i=1,2,---,1
s >0 Vk
ywkz() Vi,k,j:LQ,'--,l

e For future allocations x¢, solve the problem below to obtain (A1 ).:

min eTﬂy
T — Zi()ﬂ)itaitA_ v <0 (23)
(M)it < citk + (A2 Vi, k

A free,y; 20

16
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1, 7 — (A1) L a; > 0, and satisfying capacity constraints
€T+ =
! 0, otherwise

It should be noted based on the concept of basic feasible solutions, in the
optimal solution, for every pair (,t), there is only one k such that y;; > 0. In
paritcular, the strictly complementarity condition for the dual problem uniquely
identifies for which k, y;i > 0. Therefore, checking the capacity constraints will

be straigtforward.
Conjecture 1. For any € = % > 0, the algorithm is within (1 — €) times the
optimal value when

B> Q(f(m,n,K,e "))

where B = ming by, and f(-) is a monomial (with positive powers) of its argu-
ments.

6.4 Online Algorithm 2

The proposed method below is inspired by the SCPM algorithm. Basically the
algorithm below learns a penalty function offline from allocated bids.

At every iteration t of the algorithm, solve the problem below:

max Tt — 35 1, CitkYitk + u(S)
s.t. Yok Vitk = Qi@ Vi A1 free
> itk + 5k = b — Z;;i Yoivijk Yk Ay free
g <1 (24)
Tt 2 0
s >0 vk
Yitk 2 0 Vi, k

t—1 Lo :
where > . >, yiji presents allocated resources at previous iterations.

As discussed earlier in the section, s is unique and the problem can be solved
in a layered fashion.

The performance of this algorithm with simulated data is provided in Figure
10. For every iteration t of this algorithm, (7, ¢it, a:) are randonly generated.
In particular, a; is a random vector in {0,1}, m = pTa; + randn(0,0.2),
itk = randn(0.1,0.0016) and (b1, b2) = (1000, 2000).

[1] Mark Peters, Anthony So, and Yinyu Ye. Pari-mutuel markets: Mecha-
nisms and performance. International Workshop on Internet and Network
Economics, pages 82-95, 2007.
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Figure 10: Overall revenue for Learning Algorithm 2
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