
MS&E 310 Project: Online Linear Programming

Michael Fairley

December 11, 2017

We consider the linear program:

maxx

n∑
j=1

πjxj (1)

s.t.

n∑
j=1

aijxj ≤ bi ∀i = 1, 2, . . . ,m (2)

0 ≤ xj ≤ 1 ∀j = 1, 2, . . . , n (3)

where πj ≥ 0 is the gain to allocate resources to bidder j, aij is the required quantity of
resource i for bidder j and bi is the total available quantity of resource i. We assume that
aij ∈ {0, 1}.

In this project we consider the online version of this linear program, where x1, . . . xn
are computed sequentially as ai,1:m is revealed. That is, bidders arrive sequentially and we
must decide how much resource to allocate to the bidder before the next bidder arrives and
we have no recourse on previous decisions.

The classical offline linear program provides an upper bound for the performance of the
online linear program because the offline linear program has access to all of the information
in the problem and can allocate resources to all bidders simultaneously. The offline linear
program is feasible and bounded because x = 0 is always feasible and

∑n
j=1 πj is an upper

bound for the objective function value. Therefore the offline linear program has an optimal
solution.

1 Question 1

We consider the convex pari-mutuel call auction mechanism (CPCAM) model:

maxx

n∑
j=1

πjxj + u(s) (4)

s.t.

n∑
j=1

aijxj + si = bi ∀i = 1, 2, . . . ,m (5)

0 ≤ xj ≤ 1 ∀j = 1, 2, . . . , n (6)

si ≥ 0 ∀i = 1, 2, . . . ,m (7)

1

The first-order KTT conditions for optimality are:
Stationarity:

πj − µ1j + µ2j −
m∑
i=1

piaij = 0 ∀j = 1, 2, . . . , n (8)

∇siu(s) + µ3i − pi = 0 ∀i = 1, 2, . . . ,m (9)

Complementary Slackness

µ1j(xj − 1) = 0 ∀j = 1, 2, . . . , n (10)

µ2jxj = 0 ∀j = 1, 2, . . . , n (11)

µ3isi = 0 ∀i = 1, 2, . . . ,m (12)

Primal Feasibility

n∑
j=1

aijxj + si = bi ∀i = 1, 2, . . . ,m (13)

xj − 1 ≤ 0 ∀j = 1, 2, . . . , n (14)

−xj ≤ 0 ∀j = 1, 2, . . . , n (15)

−si ≤ 0 ∀i = 1, 2, . . . ,m (16)

Dual Feasibility

−µ1j ≤ 0 ∀j = 1, 2, . . . , n (17)

−µ2j ≤ 0 ∀j = 1, 2, . . . , n (18)

−µ3i ≤ 0 ∀i = 1, 2, . . . ,m (19)

where µ1j is the dual variable for the constraint xj − 1 ≤ 0, µ2j is the dual variable for
the constraint −xj ≤ 0 and µ3i is the dual variable for the constraint −si ≤ 0.

The first-order KKT conditions are sufficient as the LP maximizes a concave function
over a concave constraint set. The objective function is the sum of a linear function and
strictly concave function and all constraints are linear.

We argue why the CPCAM model will have a unique solution for p. First, we note that
since we are maximizing a strictly concave function with respect to s, there is a unique
optimizer s∗.

We know that ∂u(s)
∂si si=0

=∞, so if si = 0, pi =∞ no matter the value of µ3i ≥ 0. This

provides a unique solution to pi.
If si > 0 then µ3i = 0 and so pi = ∇siu(s∗). Therefore pi is also unique.
From [2] and [1], s is the contingent amount of resource i that is kept by the market

maker and u(s) represents the “future value” of these contingent resources.

2 Question 2

We consider the following online optimization model:

2

maxxk,sπkxk + u(s) (20)

s.t. aikxk + si = bi − qk−1
i ∀i = 1, 2, . . . ,m (21)

0 ≤ xk ≤ 1 (22)

si ≥ 0 ∀i = 1, 2, . . . ,m (23)

where qk−1
i =

∑k−1
j=1 aij x̄j is the amount of resources i that have already been allocated to

precedent bidders.
The KKT conditions are as follows:
Stationarity:

πk − µ1k + µ2k −
m∑
i=1

piaik = 0 (24)

∇siu(s) + µ3i − pi = 0 ∀i = 1, 2, . . . ,m (25)

Complementary Slackness

µ1k(xk − 1) = 0 (26)

µ2kxk = 0 (27)

µ3isi = 0 ∀i = 1, 2, . . . ,m (28)

Primal Feasibility

aikxk + si = bi − qk−1
i ∀i = 1, 2, . . . ,m (29)

xk − 1 ≤ 0 (30)

−xk ≤ 0 (31)

−si ≤ 0 ∀i = 1, 2, . . . ,m (32)

Dual Feasibility

−µ1k ≤ 0 (33)

−µ2k ≤ 0 (34)

−µ3i ≤ 0 ∀i = 1, 2, . . . ,m (35)

We now consider how this optimization problem can be solved efficiently. We assume
that we have a solution to the bid k − 1 with prices pk−1. Then we have:

sk−1 = b− qk−2 − ak−1xk−1 = b− qk−1 = akxk + s (36)

We now consider two high level cases. First, we consider if ∃i : bi − qk−1
i = 0, aik = 1.

Then xk = 0 is the only feasible solution and si = 0, pi = ∞. Since xk = 0, then for
∀j sj = sk−1

j , pj = ∇si(sk−1) = pk−1
j .

Second, if ∀i aik = 1 ⇒ bi > 0 then we consider three sub cases for values of xk. If
we can satisfy the KKT conditions under our assumptions for xk, then we have found an
optimal solution.

3

2.1 xk = 0

We know that xk = 0 is always feasible, so all that remains is to check the pricing conditions.
We know that the prices will remain the same because s = sk−1, so if πk ≤

∑m
i p

k−1
i aik

then xk = 0 is optimal.

2.2 xk = 1

We must check if there are enough resources remaining and then check the pricing conditions.
So if s = b− qk−1− ak ≥ 0 and πk ≥

∑m
i piaik where pi = ∇siu(b− qk−1− ak) then xk = 1

is optimal.

2.3 0 < xk < 1

We have that πk =
∑m
i piaik, so we can find the root of the following function, which is a

function of only xk:

f(x) = πk −
m∑
i

∇siu(b− qk−1
i − aikxk) (37)

We can use Newton’s method to find the root.

3 Question 3

We ran an experiment to test the convergence of the online CPCAM model under two
different utility functions. We found that the prices of all states remained near zero until
the resources ran out. This makes sense as the prices are the shadow prices for the resources,
indicating how much it is worth to the market maker to have more resources. When there
is a surplus of resources at the beginning, there is no value in having additional resources so
the prices are near zero. We found that the prices do not converge (Figure 1) to the grand
truth under any of the utility functions, but that using u2 with w = 1 causes the prices to
become closer to the grand truth, while all other utility functions cause the prices to diverge
from the grand truth. Despite this, the prices do stabilize because when the resources are
very low, the bid amount required to complete an order is very high and so most bids are
rejected and the prices remain the same as the previous time step.

We show an example of the price change for good 1 for each of the utility functions in
Figure 2. In Appendix A we provide further plots of the prices of all states. We note that
the prices are non-decreasing.

4

yyye
Sticky Note
Good summary here

yyye
Comment on Text
Good observation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bid Number

0

0.2

0.4

0.6

0.8

1

1.2

Pricing Error for Sequential CPCAM

Figure 1: Pricing Error for Online CPCAM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bid Number

0

0.2

0.4

0.6

0.8

1

1.2

P
ri
c
e
 f
o
r

G
o
o
d
 1

Good 1 Price for Sequential CPCAM

Figure 2: Price of Good 1 for Online CPCAM

5

4 Question 4 and 5

We ran an experiment to measure the performance of the online SLPM optimization model.
We found that the higher the value of k, the closer the performance of the online algorithm
to the offline solution. Dynamic updating of the prices at time points determined by a
geometric series performed even closer to the optimal solution. An example run of the
models is shown in Figure 3. We note that the optimal solution uses the resources at a
constant rate over the time horizon, whereas the online models tend to use up the resources
before the end of the time horizon. In Table 1, we give confidence intervals for 100 runs of
the bidding process.

We also consider the price stability for the geometric series and we notice that the price is
not non-decreasing (Figure 4), in contrast to the online CPCAM but the prices do converge
closer to the grand truth than online CPCAM.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bid Number

0

200

400

600

800

1000

1200

1400

1600

V
a
lu

e
 A

c
c
u
m

u
la

te
d

Performance of Online SLPM

Optimal (Offline solution)

k=50

k=100

k=200

Geometric Series (k = 50, 100, ...)

Figure 3: Performance of SLPM models under different k values

k 95% CI for Simulated Competitive Ratio
50 0.7659 [0.7569, 0.7749]
100 0.8100 [0.8019, 0.8181]
200 0.8577 [0.8507, 0.8647]

Geometric (50, 100, ...) 0.9684 [0.9665, 0.9703]

Table 1: Competitive ratio different values of k

6

yyye
Comment on Text
This is also desirable in practice.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Bid Number

0

0.05

0.1

0.15

0.2

0.25

0.3

P
ri
c
e

 f
o

r
G

o
o

d
 i

Price Stability for Online Geometric SLPM

Good 1

Good 2

Good 3

Good 4

Good 5

Good 6

Good 7

Good 8

Good 9

Good 10

Figure 4: Prices of goods for geometric SLPM

5 Question 6

We now consider an extension to the resource allocation problem where there are production
costs.

maxx

n∑
j=1

(πjxj −
m∑
i=1

K∑
k=1

cijkyijk) (38)

s.t.

K∑
k=1

yijk = aijxj ∀i, j (39)∑
i,j

yijk ≤ bk ∀k = 1, 2, . . . ,K (40)

0 ≤ xj ≤ 1 ∀j = 1, 2, . . . , n (41)

yijk ≥ 0 ∀i, j, k (42)

where cijk is the cost to allocate good i, which is produced by producer k = 1, . . . ,K to
bidder j.

The dual of this linear program can be written as:

7

minλ,p,µ

K∑
k=1

bkpk +

n∑
j=1

µj (43)

s.t. µj +

m∑
i=1

aijλij ≥ πj ∀j = 1, . . . n (44)

λij − pk ≤ cijk ∀i, j, k (45)

pk ≥ 0 ∀k = 1, 2, . . . ,K (46)

µj ≥ 0 ∀j = 1, 2, . . . , n (47)

λij free ∀i, j, k (48)

and by complementary slackness we have

pk(
∑
i,j

yijk − bk) = 0 ∀k = 1, . . . ,K (49)

µj(xj − 1) = 0 ∀j = 1, . . . , n (50)

xj(µj +

m∑
i=1

aijλij − πj) = 0 ∀j = 1, . . . , n (51)

yijk(pk + cijk − λij) = 0 ∀i, j, k (52)

We can see from these conditions that the value of xj implies similar pricing conditions
to the classical problem. A key difference is that the pricing of the state is dependent on
the bid number, j, because the cost of producing that state also depends on j.

xj = 0⇒ πj ≤
m∑
i

λijaij (53)

xj = 1⇒ πj ≥
m∑
i

λijaij (54)

0 < xj < 1⇒ πj =

m∑
i

λijaij (55)

We also see that yijk > 0 ⇒ pk + cijk − λij = 0 Then if ∃k1, k2 : yijk1 > 0, yijk2 > 0 ⇒
pk1 + cijk1 = pk2 + cijk2 .

We can use these conditions to develop an online algorithm. We take a similar approach
to SLPM where we do not accept any bids for the first h iterations and we use a one-shot
learning linear program with the resources set to h

nbk. This gives us a sampled value for pk.
For subsequent bids, we use pk to solve a sub-optimization problem for the least cost

production plan for a bid and then we check if the bid is competitive enough given the
cost of the production plan. This amounts to estimating λij via an optimization to check
if Equation (54) holds. If (54) does not hold, then we do not accept the bid. If there is no
feasible production plan for the bid due to resource constraints, then we also do not accept
the bid.

8

The sub-optimization problem at iteration l to generate a production plan is:

minλil,yilk

m∑
i

λilail

s.t. λil =

K∑
k

yilk(pk + cilk) ∀i = 1, 2, . . . ,m

K∑
k=1

yilk = ail ∀i = 1, 2, . . . ,m∑
i

yilk ≤ bk − ql−1 ∀k = 1, 2, . . . ,K

yilk ∈ {0, 1} ∀i, k

Since yikj is integer, exactly one supplier, k∗ will generate the value of λil under the first
constraint and so λil = pk∗ + cilk∗ , which is consistent with form of λij for j = l in the full
optimization problem.

After solving this sub-optimization problem, we let xl = 1 if

πl >

m∑
i

λilaij (56)

If the sub-optimization problem is infeasible or (56) does not hold then we set xl = 0
The KKT conditions (excluding primal feasibility, which is given above) for the relaxation

of the sub-optimization problem are:
Stationarity:

−ail − ti = 0 ∀i = 1, . . . ,m (57)

ui(pk + cilk) + vi + sk − µ1ik + µ2ik = 0 ∀i, k (58)

Complementary Slackness:

sk(
∑
i

yilk − bk − ql1) = 0 ∀k = 1, . . . ,K (59)

µ1ikyilk = 0 ∀i, k (60)

µ2ik(yilk − 1) = 0 ∀i, k (61)

Dual Feasibility:

sk ≥ 0 ∀k = 1, . . . ,K (62)

µ1ik ≥ 0 ∀i, k (63)

µ2ik ≥ 0 ∀i, k (64)

I ran this algorithm on simulated bidding data with different values of h. I also ran a
“greedy” algorithm with h = 50 that solves the sub-optimization problem at each step but
does not check so price competitiveness, so it accepts every bid that is feasible to accept.

9

The data generating process is defined in the Julia code in Appendix C lines 6 through
39. The specific instance of values for the plots below was:

b = [2500.0, 2500.0] Mean Cost Per Item, Supplier Suppler 1, mean item cost = [1.94286,
2.43703, 5.45992, 9.22667, 3.27307, 2.06395, 9.11909, 4.26143, 8.43837, 9.65688] Suppler 2,
mean item cost = [4.83836, 7.07352, 8.31443, 6.89239, 7.05998, 5.27056, 3.07869, 6.42893,
4.44837, 8.03415] Mean Bid Pricing = [3.13844, 4.5031, 6.63501, 7.80736, 4.91436, 3.41509,
5.84672, 5.09301, 6.1912, 8.59334]

We note that h = 100 performs worse than h = 50, which differs from the pattern
in SLPM where the higher h (denoted k in SLPM), the better the performance. Future
work would involve determining how to generate random bidding data in a way that we can
better reason about the optimal performance (in a way analgous to using a grand truth price
vector), determining the conditions under which this algorithm has a specific competitive
ratio and how h impacts performance under these conditions.

2000 4000 6000 8000 10000
Bid Number

0

2000

4000

6000

8000

Va
lu
e
Ac

cu
m
ul
at
ed

Optimal
h=50
h=100
h=200
Greedy, h=50

Figure 5: Performance of Online Production Costs Solver

10

yyye
Comment on Text
These would be good future research topics, including some explanations and proofs.Well done.

2000 4000 6000 8000 10000
Bid Number

0.00

0.25

0.50

0.75

1.00

Pe
rc
en
t o

f R
es
ou
rc
es
 U
se
d

Supplier 1

Optimal
h=50
h=100
h=200
Greedy, h=50

Figure 6: Percentage of supplier 1’s resources used over time

2000 4000 6000 8000 10000
Bid Number

0.00

0.25

0.50

0.75

1.00

Pe
rc
en
t o

f R
es
ou
rc
es
 U
se
d

Supplier 2

Optimal
h=50
h=100
h=200
Greedy, h=50

Figure 7: Percentage of supplier 2’s resources used over time

11

2000 4000 6000 8000 10000
Bid Number

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc
en

t o
f B

id
s A

cc
ep

te
d
so

 F
ar

Optimal
h=50
h=100
h=200
Greedy, h=50

Figure 8: Percentage of bids accepted so far

References

[1] Shipra Agrawal et al. “A Unified Framework for Dynamic Prediction Market Design”.
In: Operations Research 59.3 (2011), pp. 550–568.

[2] Mark Peters, Anthony Man-Cho So, and Yinyu Ye. “Pari-mutuel Markets: Mechanisms
and Performance”. In: Proceedings of the 3rd International Conference on Internet and
Network Economics. 2007.

A Price of Goods in Online CPCAM

12

Figure 9: Pricing for Online CPCAM

13

B MATLAB Code for Online CPCAM and SLPM

1 function [X, prices] = solve_scpm(n, m, b, bid_generator, obj_fun, x0)

2 options = optimoptions('fmincon', 'SpecifyObjectiveGradient', true,...

3 'display', 'off');

4 q = zeros(m, 1);

5 prices = zeros(m, n);

6 X = zeros(n, 1);

7 for j = 1:n

8 [a_k, pi_k] = bid_generator();

9

10 if j > 1 && (pi_k <= prices(:, j-1)'*a_k || ~all(b(a_k==1) - q(a_k==1)

> 0))↪→

11 X(j) = 0.0;

12 prices(:, j) = prices(:, j-1);

13 else

14 s1 = b - q - a_k;

15 [~, g] = obj_fun([1; s1], pi_k);

16 p1 = -g(2:end);

17 if all(s1 >= 0) && (pi_k >= p1'*a_k)

18 X(j) = 1.0;

19 prices(:, j) = p1;

20 else

21 fun = @(xs) obj_fun(xs, pi_k);

22 [xs, ~, ~, ~, ~, ~, ~] = fmincon(fun, x0, [], [],...

23 [a_k, eye(m)], max(b-q, 0), zeros(m+1, 1),...

24 [1; Inf(m, 1)], [], options);

25 [~, g] = obj_fun(xs, pi_k);

26 prices(:, j) = -g(2:end);

27 X(j) = xs(1);

28 end

29 end

30 q = q + a_k * X(j);

31

32 if mod(j, 100) == 0

33 fprintf('Solved iteration %i\n', j)

34 end

35

36 end

37 return

1 function [X, prices, value] = online_slpm(n, k_vector, m, b, bid_generator)

2 options = optimoptions('linprog', 'display', 'off');

3 q = zeros(m, 1);

4 A = zeros(m, n);

5 PI = zeros(n, 1);

6 prices = zeros(m, n);

7 X = zeros(n, 1);

8 value = zeros(n + 1, 1);

14

9

10 prices(:, 1) = Inf;

11 ki = 1;

12 k = k_vector(ki);

13

14 for j = 1:n

15 [a_k, pi_k] = bid_generator();

16 A(:, j) = a_k;

17 PI(j) = pi_k;

18

19 if pi_k > prices(:, j)' * a_k && all(a_k <= b - q)

20 X(j) = 1.0;

21 else

22 X(j) = 0.0;

23 end

24 value(j+1) = value(j) + X(j) * pi_k;

25 q = q + X(j) * a_k;

26

27 if j == k

28 if ki < length(k_vector)

29 ki = ki + 1;

30 k = k_vector(ki);

31 end

32 [~, ~, ~, ~, lambda] = linprog(-PI(1:j), A(:, 1:j), (j / n) * b,...

33 [], [], zeros(j, 1), ones(j, 1), options);

34 prices(:, j+1) = lambda.ineqlin;

35 elseif j < n

36 prices(:, j+1) = prices(:, j);

37 end

38 end

39 end

C Julia Code for Online Production Problem

1 using JuMP

2 using Gurobi

3

4 const output_flag = 0

5

6 function problem_setup(m, K, seed; total_resource=500.0, u = 1, v = 10)

7 rng_gt = MersenneTwister(seed + 200)

8

9 b = ones(K) * m * total_resource / K

10 # Assume cost is normally distributed around a mean_ik for each good

and supplier↪→

11 # pre compute costs

12 C_mean = u + (v - u) * rand(rng_gt, m, K)

15

13 C = randn(rng_gt, m, n, K)

14 for j = 1:n

15 C[:, j, :] = C_mean + C[:, j, :] * 0.2

16 end

17 # r_c_mean = u + (v - u) * rand(rng_gt, m)

18 r_c_mean = mean(C_mean, 2) + randn(rng_gt) * 0.2

19 temp = r_c_mean

20 r_c_mean = zeros(m)

21 for i = 1:m

22 r_c_mean[i] = temp[i]

23 end

24

25 println("Problem:")

26 println("b = $b")

27 println("Mean Cost Per Item, Supplier")

28 for k = 1:K

29 println("Suppler $k, mean item cost = $(C_mean[:, k])")

30 end

31 println("Mean Bid Pricing = $r_c_mean")

32

33 rng = MersenneTwister(seed)

34 bid_generator = function () return rand(rng, 0:1, m) end

35 c_generator = function (j) return C[:, j, :] end

36 pi_generator = function (a_k) return transpose(r_c_mean) * a_k +

randn(rng) * 0.2 end↪→

37

38 return b, bid_generator, c_generator, pi_generator, rng

39 end

40

41 function offline_lp(n, m, K, b, bid_generator::Function,

c_generator::Function, pi_generator::Function)↪→

42 # collect all data first

43 q = zeros(n + 1, K) # resources used

44 A = zeros(m, n)

45 C = zeros(m, n, K)

46 pi = zeros(n)

47 value = zeros(n + 1)

48

49 for j = 1:n

50 A[:, j] = bid_generator()

51 C[:, j, :] = c_generator(j)

52 pi[j] = pi_generator(A[:, j])

53 end

54

55 _, prices, X, Y, _ = solve_primal(n, m, K, b, A, C, pi)

56

57 for j = 1:n

16

58 value[j + 1] = value[j] + X[j] * pi[j] - sum(Y[:, j, :] .* C[:, j,

:])↪→

59 for k = 1:K

60 q[j + 1, k] = q[j, k] + sum(Y[:, j, k])

61 end

62 end

63

64 return prices, X, value, q

65

66 end

67

68 function online_lp(n, h_vector, m, K, b, bid_generator::Function,

c_generator::Function, pi_generator::Function;↪→

69 greedy=false, print_every=100)

70 q = zeros(n + 1, K) # resources used

71 A = zeros(m, n)

72 C = zeros(m, n, K)

73 pi = zeros(n)

74 prices = zeros(K, n)

75 X = zeros(n)

76 Y = zeros(m, n, K)

77 value = zeros(n + 1)

78

79 # initialize price so that first k bids are not fulfilled

80 h = shift!(h_vector)

81 h1 = h

82 for j = 1:n

83 # draw bid

84 A[:, j] = bid_generator()

85 C[:, j, :] = c_generator(j)

86 pi[j] = pi_generator(A[:, j])

87

88 # solve ip to get y

89 if j >= h1

90 feasible, y, obj = ip_sub(m, K, b - q[j, :], A[:, j], C[:, j,

:], prices[:, j])↪→

91 if feasible == true && (pi[j] > obj || greedy == true)

92 X[j] = 1.0

93 Y[:, j, :] = y

94 else

95 X[j] = 0.0

96 Y[:, j, :] = 0

97 end

98 else

99 X[j] = 0.0

100 Y[:, j, :] = 0

101 end

102

17

103 for k = 1:K

104 q[j + 1, k] = q[j, k] + sum(Y[:, j, k])

105 end

106 value[j + 1] = value[j] + X[j] * pi[j] - sum(Y[:, j, :] .* C[:, j,

:])↪→

107

108 # learning step

109 if j == h && j < n

110 if !isempty(h_vector) h = shift!(h_vector) end

111 _, prices[:, j + 1], _, _, _ = solve_primal(j, m, K, (b - q[j,

:]) * (j / n), A[:, 1:j], C[:, 1:j, :], pi[1:j])↪→

112 elseif j < n

113 prices[:, j + 1] = prices[:, j]

114 end

115

116 if mod(j, print_every) == 0

117 println("Iteration $j, value = $(value[j])")

118 end

119 end

120 return prices, X, value, q

121

122 end

123

124 function solve_primal(n, m, K, b, A, C, pi)

125 model = Model(solver=GurobiSolver(OutputFlag = 0))

126 @variable(model, 0 <= x[1:n] <= 1)

127 @variable(model, y[1:m, 1:n, 1:K] >= 0)

128

129 resource_constraint = []

130 for i = 1:m

131 for j = 1:n

132 push!(resource_constraint, @constraint(model, sum(y[i, j, :])

== A[i, j] * x[j]))↪→

133 end

134 end

135

136 production_constraint = []

137 for k = 1:K

138 push!(production_constraint, @constraint(model, sum(y[:, :, k]) <=

b[k]))↪→

139 end

140

141 @objective(model, Max, sum(x .* pi) - sum(C .* y))

142

143 # TT = STDOUT # save original STDOUT stream

144 # redirect_stdout()

145 status = solve(model)

146 # redirect_stdout(TT) # restore STDOUT

18

147

148 if status == :Optimal

149 return getdual(resource_constraint),

getdual(production_constraint), getvalue(x), getvalue(y),

getobjectivevalue(model)

↪→

↪→

150 else

151 print(model)

152 error("No production prices found. Status = $status")

153 end

154 end

155

156 function solve_dual(n, m, K, b, A, C, pi)

157 model = Model(solver = GurobiSolver(OutputFlag=0))

158 @variable(model, lambda[1:m, 1:n])

159 @variable(model, p[1:K] >= 0)

160 @variable(model, mu[1:n] >= 0)

161

162 c1 = []

163 for j = 1:n

164 push!(c1, @constraint(model, mu[j] + sum(A[:, j] .* lambda[:, j])

>= pi[j]))↪→

165 end

166

167 c2 = []

168 for i = 1:m

169 for j = 1:n

170 for k = 1:K

171 push!(c2, @constraint(model, lambda[i, j] - p[k] <= C[i, j,

k]))↪→

172 end

173 end

174 end

175

176 @objective(model, Min, sum(b .* p) + sum(mu))

177

178 status = solve(model)

179

180 if status == :Optimal

181 return getdual(c1), getdual(c2), getvalue(lambda), getvalue(p),

getvalue(mu), getobjectivevalue(model)↪→

182 else

183 print(model)

184 error("No optimal solution to dual found. Status = $status")

185 end

186 end

187

188 function ip_sub(m, K, b, A, C, p)

189 model = Model(solver=GurobiSolver(OutputFlag=output_flag))

19

190 @variable(model, lambda[1:m])

191 @variable(model, 0 <= y[1:m, 1:K] <= 1)

192

193 for i = 1:m

194 @constraint(model, lambda[i] == sum(y[i, :] .* (p + C[i, :])))

195 end

196

197 for i = 1:m

198 @constraint(model, sum(y[i, :]) == A[i])

199 end

200

201 for k = 1:K

202 @constraint(model, sum(y[:, k]) <= b[k])

203 end

204

205 @objective(model, Min, sum(lambda .* A))

206

207 # TT = STDOUT # save original STDOUT stream

208 # redirect_stdout()

209 status = solve(model)

210 # redirect_stdout(TT) # restore STDOUT

211

212 if status == :Optimal

213 return true, getvalue(y), getobjectivevalue(model)

214 elseif status == :Infeasible

215 return false, zeros(m, K), Inf

216 else

217 print(model)

218 error("Subproblem not optimal or infeasible. Status = $status")

219 end

220 end

221

222 function simulation_q6(n, m, K; seed=1234)

223 b, bg, cg, pig, rng = problem_setup(m, K, seed)

224

225 prices = zeros(K, n, 5)

226 X = zeros(n, 5)

227 value = zeros(n + 1, 5)

228 q = zeros(n + 1, K, 5)

229

230 # offline lp

231 srand(rng, seed)

232 println("Computing offline LP")

233 prices_opt, X[:, 1], value[:, 1], q[:, :, 1] = offline_lp(n, m, K, b,

bg, cg, pig)↪→

234 for k = 1:K

235 prices[k, :, 1] = prices_opt[k]

236 end

20

237

238 # online lp with k_vector

239 h_vector = [50]

240 srand(rng, seed)

241 println("Computing online LP, h = 50")

242 prices[:, :, 2], X[:, 2], value[:, 2], q[:, :, 2] = online_lp(n,

h_vector, m, K, b, bg, cg, pig)↪→

243

244 h_vector = [100]

245 srand(rng, seed)

246 println("Computing online LP, h = 100")

247 prices[:, :, 3], X[:, 3], value[:, 3], q[:, :, 3] = online_lp(n,

h_vector, m, K, b, bg, cg, pig)↪→

248

249 h_vector = [200]

250 srand(rng, seed)

251 println("Computing online LP, h = 200")

252 prices[:, :, 4], X[:, 4], value[:, 4], q[:, :, 4] = online_lp(n,

h_vector, m, K, b, bg, cg, pig)↪→

253

254 # greedy

255 h_vector = [50]

256 srand(rng, seed)

257 println("Computing online greedy LP, h = 50")

258 prices[:, :, 5], X[:, 5], value[:, 5], q[:, :, 5] = online_lp(n,

h_vector, m, K, b, bg, cg, pig, greedy=true)↪→

259

260 return b, prices, X, value, q

261 end

21

