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Recently, coinciding with and perhaps driving the increased popularity of prediction markets, several novel pari-mutuel
mechanisms have been developed such as the logarithmic market-scoring rule (LMSR), the cost-function formulation of
market makers, utility-based markets, and the sequential convex pari-mutuel mechanism (SCPM). In this work, we present
a convex optimization framework that unifies these seemingly unrelated models for centrally organizing contingent claims
markets. The existing mechanisms can be expressed in our unified framework by varying the choice of a concave value
function. We show that this framework is equivalent to a convex risk minimization model for the market maker. This
facilitates a better understanding of the risk attitudes adopted by various mechanisms. The unified framework also leads to
easy implementation because we can now find the cost function of a market maker in polynomial time by solving a simple
convex optimization problem.

In addition to unifying and explaining the existing mechanisms, we use the generalized framework to derive necessary
and sufficient conditions for many desirable properties of a prediction market mechanism such as proper scoring, truthful
bidding (in a myopic sense), efficient computation, controllable risk measure, and guarantees on the worst-case loss. As a
result, we develop the first proper, truthful, risk-controlled, loss-bounded (independent of the number of states) mechanism;
none of the previously proposed mechanisms possessed all these properties simultaneously. Thus, our work provides an
effective tool for designing new prediction market mechanisms. We also discuss possible applications of our framework to
dynamic resource pricing and allocation in general trading markets.
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decision analysis: risk; finance: asset pricing.
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1. Introduction
Contingent claim markets are organized for a variety of
purposes. Prediction markets are created to aggregate infor-
mation about a particular event. Financial markets involv-
ing contingent claims allow traders to hedge their exposure
to certain event outcomes. Betting markets are designed
for entertainment purposes. The participants in these mar-
kets trade claims that will pay a fixed amount if a certain
event occurs. Some examples of these events would be the
winner of the World Series, the value of the latest con-
sumer price index, or the release date of Windows Vista.
Prediction markets have grown in popularity as research
into the accuracy of their predictions has shown that they
effectively aggregate information from the trading popula-
tion. One of the longest-running prediction markets is the
Iowa Electronic Market, which allows real money betting
on various elections. Studies by Berg and her coauthors
(Berg and Rietz 2006; Berg et al. 2008a, b) have shown that

the information generated by these markets often serves
as a better prediction of actual outcome than polling data.
Google has run internal prediction markets over a variety
of events, and Cowgill et al. (2009) have shown that their
predictions also perform quite well.

Despite the potential value created by these markets,
there can be some difficulties with their introduction and
development. First, many nascent markets suffer from liq-
uidity problems. Occasionally these problems stem from
the choice of mechanism used to operate the market. Orga-
nizing markets as a continuous double auction (like the
NASDAQ stock market) is a popular option and usually
performs well. However, in thin markets, Bossaerts et al.
(2002) have demonstrated that some problems surface that
inhibit the growth of liquidity. To overcome this situation,
the market organizer could introduce an automated mar-
ket maker that centrally interacts with the traders. This
mechanism follows some prespecified rules for pricing
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shares. The market organizer must determine these rules
with one key question being his own tolerance for risk.
Recently, there has been a surge in research of these auto-
mated market makers.

New market-making mechanisms based on pari-mutuel
principles have recently been developed by Hanson (2003),
Pennock (2004), and Peters (2009). These market makers
allow contingent claims in nascent markets to be imme-
diately priced according to rules of the mechanism. The
mechanisms are pari-mutuel in the sense that the winners
are generally paid out by the stakes of the losers. The
claims being traded are commitments to pay out a fixed
amount if a particular event occurs in the future. The mech-
anism developed by Hanson has been shown to perform
well in simulated markets (see Peters et al. 2007) and has
been adopted by many online prediction markets.

However, the origins of these new mechanisms differ.
Peters (2009) developed their mechanism by creating a
sequential version of a call auction model that is solved by
convex optimization. Their sequential convex pari-mutuel
mechanism (SCPM) uses a convex optimization problem to
determine when to accept orders and how to price accepted
orders. On the other hand, Hanson’s mechanism is derived
from scoring rules. Scoring rules are functions used to
compare distributions. In particular, Hanson uses the log-
arithmic scoring rule to determine how much to charge
a trader for a new order. His mechanism is called the
logarithmic market-scoring rule (LMSR). Using a simi-
lar approach to Hanson’s, it is possible to create market
makers for other scoring rules. Those market makers are
called the market-scoring rule (MSR) market makers. In
contrast to the SCPM, the MSR model doesn’t directly pro-
vide an optimization problem from the market organizer’s
standpoint.

Recently, there has been some interest in comparing and
unifying these mechanisms for prediction markets. Chen
and Pennock (2007) give an equivalent cost-function for-
mulation for the MSR market makers, and relate them to
utility-based market makers. Peters et al. (2007) empirically
compare the performances of various market mechanisms.
In this work, we provide a strong theoretical foundation
for unifying existing market makers like the SCPM, the
MSR, cost-function based markets, and utility-based mar-
kets under a single convex optimization framework. Our
model not only aids in comparing various mechanisms, but
also provides intuitive understanding of the behavior of the
market organizer in these seemingly different mechanisms.
Specifically, our main contributions are as follows:

• A unifying framework: We propose a generalized ver-
sion of the SCPM as a unified convex optimization frame-
work for market makers. The framework subsumes existing
models of prediction market design. In particular, any
market-scoring rule, cost-function based market, or utility-
based market (of Chen and Pennock 2007) can be expressed
into this framework by varying the choice of a concave
value function.

• Intuitive risk-based interpretation: We establish the
equivalence of prediction market mechanisms to the con-
vex risk minimization model for the market maker. The risk
attitude of the market maker explains the design choices
of various mechanisms. For popular mechanisms like the
LMSR, the implicit risk function turns out to characterize
precisely how much the market maker is prepared to invest
in order to learn a distribution that is different from his
prior belief.

• Value/cost function to scoring rule: It was shown in
Chen and Pennock (2007) that any proper scoring rule
implies a cost function defined by certain conditions. How-
ever, it had been unknown what type of cost functions
would imply proper scoring rules. We establish this direc-
tion of the relation by showing that every monotone and
concave value function with an onto derivative (easy to
check) induces a cost function and implicitly a proper scor-
ing rule. Moreover, the cost function can be constructed
by simply solving a single variable convex optimization
problem.

• New mechanism design: Our framework aids new
mechanism design by providing easy-to-check necessary
and sufficient conditions for a prediction market mechanism
to be myopically truthful, proper, loss bounded, and risk
measured. As a result, we derive the FIRST loss-bounded,
risk-measured, and proper prediction market mechanism
that uses a quadratic value function (Quad-SCPM). The
original quadratic rule was neither monotone nor risk mea-
sured, and the loss of LMSR depends on the number of
states. This opens the possibility of handling markets with
large number of states.

The rest of the paper is organized as follows. To begin,
§2 provides some background on the different mechanisms
that we study. In §3, we propose a new framework based
on a generalization of the SCPM and demonstrate its truth-
ful pricing property, its corresponding cost function, its
guarantee on worst-case loss, and its relation to a convex
risk minimization problem for the market maker. In §4,
we show that the SCPM framework is equivalent to the
cost-function based markets and the MSR market makers,
and that it strictly subsumes the set of markets obtainable
from the utility framework presented in Chen and Pennock
(2007). Section 5 demonstrates how our framework can be
used to easily identify key properties of existing mecha-
nisms and develop new mechanisms with desirable charac-
teristics. In §6, we close the paper with a summary of our
contributions for prediction market design and implications
on design of online trading markets in general.

2. Background
In this section, we provide some background on the
key mechanisms for prediction markets discussed in this
work—the market scoring rule mechanisms (MSR), the
cost-function based market makers, the utility-based market
makers, and the sequential convex pari-mutuel mechanism
(SCPM).
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Let � represent a discrete or discretized random event
to be predicted, with N mutually exclusive and exhaustive
outcomes. We consider a contingent claim market where
claims are of the form “Pays $1 if the outcome state is i.”
A new trader arrives and submits an order that essentially
specifies the claims over each outcome state that the trader
desires to buy. The market maker then decides what price
to charge for the new order. Various mechanisms treat a
new order in seemingly different manners.

2.1. Market Scoring Rules

Let Er = 4r11 r21 0 0 0 1 rN 5 represent a probability estimate for
the random event �. A scoring rule is a sequence of scoring
functions, S=S14Er51S24Er51 0 0 0 1SN 4Er5, such that a score
Si4Er5 is assigned to Er if outcome i of the random vari-
able � is realized. A proper scoring rule (Winkler 1969) is
a scoring rule that motivates truthful reporting of beliefs.
Based on proper scoring rules, Hanson (2003) developed
the market-scoring rule (MSR) mechanism. In the MSR
market, the market maker with a proper scoring rule S
begins by setting an initial probability estimate, Er0. Every
trader can change the current probability estimate to a new
estimate of his choice as long as he agrees to pay the mar-
ket maker the scoring rule payment associated with the
current probability estimate and receive the scoring rule
payment associated with the new estimate.

Some examples of market scoring rules are the logarith-
mic market scoring rule (LMSR) (Hanson 2003)

Si4Er5= b log4ri5 4b > 051

and the quadratic market scoring rule

Si4Er5= 2bri − b
∑

j

r2
j 4b > 050

Hanson’s MSR has many favorable characteristics. It is
designed as a pari-mutuel mechanism that bounds the risk
of the market organizer. It functions as an automated mar-
ket maker in the sense that it is always able to calculate
prices for new orders. The LMSR is also known to elicit
truthful bids from the market traders.

2.2. Cost-Function Based Market Makers

Recently, Chen and Pennock (2007) proposed a cost-
function based implementation of market makers. Let the
vector Eq ∈ <N represent the number of claims on each state
currently held by the traders. In the cost-function based for-
mulation, the total cost of all the orders Eq is calculated via
some cost function C4 Eq5. A trader submits an order charac-
terized by the vector Ea ∈ <N where ai reflects the number
of claims over state i that he desires. The market orga-
nizer charges the new trader C4 Eq+ Ea5−C4 Eq5 for his order.
At any time in the market, the going price of a claim for
state i, pi4 Eq5, equals ¡C/¡qi. The price is the cost per share
for purchasing an infinitesimal quantity of claim i. Chen

and Pennock (2007) showed that any scoring rule has an
equivalent cost-function formulation. For example, below
are the specific cost and pricing functions for LMSR:

C4 Eq5= b log
(

∑

j

eqj/b
)

and pi4 Eq5=
eqi/b

∑

j e
qj/b

0

For general market scoring rules, they proposed three equa-
tions that the cost function C4 · 5 should satisfy so that the
cost-function based market maker is equivalent to the mar-
ket based on a given scoring rule S:

Si4 Ep5= qi −C4 Eq5+ ki ∀ i
∑

i

pi = 1

pi =
¡C

¡qi
∀ i1

(1)

where ki ∈ < can be any constant. We use this formu-
lation later to prove equivalence of the MSR and SCPM
mechanisms.

2.3. Utility-Based Market Makers

In Chen and Pennock (2007), the authors also proposed a
utility-based market maker. This market maker has a utility
function over the final payoffs and maintains his expected
utility with respect to a certain subjective probability dis-
tribution when running the market. Let E� be the market
maker’s subjective probability estimate for the outcomes,
u4x5 be a differentiable mapping < → < that expresses his
state-independent utility for the final payoff x, and Em ∈ <N

be the vector of payoffs across all states. At each stage of
the market, the risk-neutral price of each state is defined by

pi =
�iu

′4mi5
∑

j �ju
′4mj5

1

where u′4x5 is the derivative of u4 · 5 at x.
Chen and Pennock (2007) showed that using this price,

the utility-based market maker preserves the utility at a
certain constant level during the whole trading process,
namely,

∑

j

�ju4mj5= k1

where k ∈ < is a constant. They also show that the worst-
case loss for the market maker is bounded under some reg-
ularity conditions on u4 · 5. They defined the cost function
for the utility-based market maker as the solution of the
following equation,

∑

j

�ju4C4 Eq5− qj5= k1

and showed that for a special class of utility functions (i.e.,
the HARA utility functions), the utility-based market maker
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is equivalent to a market maker with a corresponding pseu-
dospherical scoring rule. Chen and Pennock were the first
to formulate the problem in terms of the market maker’s
risk attitude with respect to future payoffs. Unfortunately,
in practice the expressiveness of their model is limited
because market makers are typically not highly informed
about the probability of each outcome and are therefore
unable to commit to a choice of subjective probabilities.

2.4. Sequential Convex Pari-Mutuel Mechanism

The SCPM was designed to require traders to submit orders
that include three elements: a limit price � ∈ <, a limit
quantity l, and a vector Ea that describes the order. Specifi-
cally, each component of the vector Ea either takes the value
of 1 (if a claim over the specified state is desired) or 0
(if it is not desired). The limit price refers to the maximum
amount that the trader wishes to pay for one share. The
limit quantity represents the maximum number of shares
that the trader is willing to buy. The market maker decides
the actual number of shares x of a new order to grant and
the price to charge for it. The market maker makes this
decision by solving the following optimization problem:

maximize
x1 z1 Es

�x− z+
∑

i

�i log4si5

s0t0 Eax+ Es + Eq = zEe

0 ¶ x¶ l1

(2)

where parameter Eq stands for the numbers of shares held
by the traders prior to the arrival of the new order 4�1 l1 Ea5,
and Ee represents the vector of all ones. Each time a new
order arrives, the optimization problem (2) is solved and
the state prices, denoted by Ep, are defined to be the optimal-
dual variables associated with the first set of constraints.
The trader is then charged according to the inner product
of the state price vector and the order filled, i.e., EpT Ea.

This optimization problem has the following interpreta-
tion for the market maker. The variable z represents the
largest number of accumulated shares for any of the out-
comes, whereas for any i, si represents the contingent num-
bers of surplus shares kept by the market maker given that
the state is i. The function v4Es5=

∑

i �i log4si5, with E�¾ 0,
captures the “future value” of these surplus shares. When
E�= 0, the objective reduces to maximizing �x− z, which
represents the worst-case profit made after accepting the
new order. Later in this paper, we establish that the market
maker can adjust his risk attitude through choosing E�.

2.5. Other Market Makers

The dynamic pari-mutuel market (DPM) of Pennock (2004)
is another popular market maker that we should mention. It
was created as a cost-function based market maker where
the cost and price functions are derived from some desired
ratios between prices and the number of shares granted

in each state. In particular, the following cost and pricing
functions are commonly used:

C4 Eq5= �
√

∑

j

q2
j and pi4 Eq5=

�qi
√

∑

j q
2
j

0

A key difference between this mechanism and the other
mechanisms considered in this paper is that the DPM
doesn’t guarantee a fixed payoff of $1 for each winning
share. Although the value of a winning order is lower
bounded by �, its exact value is not known until the last
order is submitted. Mainly due to this issue, we will not be
considering this market maker in the remainder of this work.

3. The Unifying Framework
In this paper, we illustrate that a generalized formulation
of the SCPM provides a unifying framework for dynamic
prediction market design. We propose the following con-
vex optimization model with a concave continuous value
function v4Es5 21

maximize
x1 z1 Es

�x− z+ v4Es5

s0t0 Eax+ Es + Eq = zEe

0 ¶ x¶ l0

(3)

Note that the original SCPM model of Peters et al. (2007)
is a special case of (3) that uses the value function v4Es5=
∑

i �i log si. From here on, “SCPM” refers to the above
generalized SCPM model. When required, we disambiguate
by referring to the original model with v4Es5 =

∑

i �i log si
as “Log-SCPM.” The optimization model (3) has exactly
the same meaning for the market maker as the Log-SCPM,
and inherits many desirable properties like intuitive inter-
pretation, convex formulation, global optimality, Lagrange
duality, polynomial computational complexity, etc., from
the original Log-SCPM model. Next, we demonstrate some
new desirable properties of the new SCPM framework,
including truthfulness of the pricing scheme, efficient cost-
function based scoring rules, easily computable guarantees
on worst-case loss, and a risk measure interpretation.

3.1. Truthful Pricing Scheme

In this section, we design a truthful pricing scheme for
the generalized SCPM framework. We shall assume limited
misreports, that is, we assume that a bidder may only lie
about his valuation � of an order. There are no misreports
of the arrival time of the bidder in the market, and a bidder
is only allowed to bid once. Such truthfulness is also known
as myopic truthfulness.

The original implementation of the SCPM model does
not provide incentives for the traders to bid truthfully
(Peters et al. 2007, Peters 2009). On the other hand, market-
scoring rules such as LMSR ensure myopically truthful
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bidding. We show that this difference is attributed to a dif-
ference between the implementation of the SCPM and the
market-scoring rule-pricing scheme. As explained in §2.4,
in the original SCPM model, the market organizer charged
a new trader based on the dual state price vector, which
was sensitive to the bid value of the trader. However, in the
market-scoring rules such as LMSR, the trader is charged
according to a cost function, which is independent of the
current trader’s bid.

In what follows, we show that our general SCPM frame-
work is equivalent to the generalized VCG mechanism
(Groves 1973, also see Nisan et al. 2007), and the VCG
pricing scheme gives a general truthful pricing scheme for
this model. In fact, as we show later, the VCG pricing
scheme is equivalent to charging the traders based on the
cost function of the market maker. This gives an interesting
interpretation of the cost-function based implementation of
these markets.

Theorem 1. Irrespective of the choice of value function
v4 · 5, the SCPM mechanism admits myopically truthful bid-
ding under VCG pricing scheme.

Proof. The optimization problem (3) used by the SCPM
model to decide the allocation x∗ for a new incoming trader
can be rewritten as

x∗
= arg max

80¶x¶l9

�x+�4x51

where �4x5 is the concave function defined as

�4x5= maximize
z1 Es

−z+ v4Es5

s0t0 Eax+ Es + Eq = zEe0

This allocation method is an “affine maximizer” (affine
in the bid value �). A truthful pricing mechanism for
such model is given by generalized Vickrey-Clarke-Groves
(VCG) scheme where the trader is charged an amount
�405 − �4x∗5, i.e., the externality the agent imposes on
other agents (Nisan et al. 2007). �

Additionally, this connection to the VCG scheme allows
us to extend truthful trading to richer betting markets.
This is illustrated in the following example where multiple
orders are processed simultaneously.

Example 1 (Multiple Orders). Instead of one trader at
a time, let multiple traders with orders 4 Eai1�i1 li5

k
i=1 be

allowed to enter the market simultaneously. These orders
can actually be processed and charged together. Specifi-
cally, the market maker will solve the following program:

maximize
xi1 z1 Es

k
∑

i=1

�ixi − z+ v4Es5

s0t0
k
∑

i=1

Eaixi + Es + Eq = zEe

0 ¶ xi ¶ li ∀ i0

Suppose the optimal solution is 4Ex∗1 Es∗1 z∗5. Then the
VCG scheme, which ensures truthful bidding, prices each
order i by �i405 − �i4x

∗
i 5, where function �i4xi5 is

defined as

�i4xi5 2= maximize
xj 1 z1 Es

∑

j 6=i

�jxj − z+ v4Es5

s0t0
∑

j 6=i

Eajxj + Eaixi + Es + Eq = zEe

0 ¶ xj ¶ lj1 ∀ j 6= i0

Remark 1. Note that the concept of “truthfulness” is only
concerned with the design of bidding and pricing mech-
anism so that a rational and myopic trader bids his true
valuation for an order that is fixed (“Ea ” is fixed). Theo-
rem 1 allows us to establish a clear connection between
SCPM and the theory of mechanism design for bidding
markets (Nisan et al. 2007) where “truthfulness” plays an
important role. In §4.2, we will also make the connection
with scoring rule markets and the notion of “properness.”
Intuitively, properness of a scoring rule further ensures that
it is profitable for traders to buy securities until the “market
belief” reflects their actual belief, thus, it relates directly to
the choice of orders “Ea .”

3.2. Cost Function of the Market Maker

Section 2.2 discussed a cost-function based implementation
for the market makers, introduced by Chen and Pennock
(2007). The cost function C4 Eq5 for the market maker rep-
resents the total money collected by the market organizer
and depends only on the total orders Eq allocated so far.
An incoming trader with order Ea is charged a price of
C4 Eq + Eax5−C4 Eq5.

An easily computable convex cost function for the SCPM
market with VCG pricing can be derived as follows.

Lemma 1. Let Eq be the number of shares on each state
held by the traders in an SCPM market with value function
v4 · 5. The cost function C4 Eq5 associated with this market
is given by

C4 Eq5= min
t

t − v4t Ee− Eq50 (4)

The cost function C4 Eq5 is convex, arbitrage free, and has
the property that EeTïC4 Eq5= 11 ∀ Eq ¾ 0.

Proof. To prove that (4) is the cost function for this market
maker, simply note that C4 Eq + Eax5−C4 Eq5= �405−�4x5,
i.e., the VCG price for the incoming order.

C4 Eq5 is convex because it is the minimum over t of a
function that is jointly convex in t and Eq. It is easy to ver-
ify the no-arbitrage condition C4 Eq + t Ee5 = t + C4 Eq5 from
the definition of C4 Eq5 in (4). Finally, the property that
EeTïC4 Eq5= 11 ∀ Eq ¾ 0 follows from the optimality condi-
tion for this optimization problem. �

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Agrawal et al.: A Unified Framework for Dynamic Prediction Market Design
Operations Research 59(3), pp. 550–568, © 2011 INFORMS 555

It is to be noted that not only is the cost function convex
and arbitrage free, but it can also be easily computed for
any given Eq by solving a single-variable convex optimiza-
tion problem. This is in contrast to the market-scoring rule
markets, where computing the cost function is nontrivial
and requires solving the set of differential equations shown
in Equation (1).

3.3. Worst-Case Loss for the Market Maker

An interesting consequence of the cost function represen-
tation of the SCPM is that the worst-case loss can be for-
mulated as a convex optimization problem:

Theorem 2. Assuming the market starts with zero shares
initially, then the worst-case loss for the market maker
using the SCPM mechanism is given by B+C405 where

B = max
i

{

max
Es

v4Es5− si

}

and C4 · 5 is the cost function defined by (4).

Proof. Let the number of shares held by the traders at a
certain moment be Eq. By Lemma 1, assuming we started
with zero shares, the total money collected by that time
is C4 Eq5 − C405. On the other hand, if state i occurs, the
market maker needs to pay amount qi. Thus, the worst-case
loss of the market maker when state i occurs can be found
by solving the optimization problem

max
Eq¾0

qi − 4C4 Eq5−C4055

= max
t1 Eq¾0

84qi − t5+ v4t Ee− Eq59+C405

= max
Es

{

v4Es5− si
}

+C4050

We finally take the maximum among all outcome states to
conclude the proof. �

The following corollary states the condition under which
the market maker has bounded loss:

Corollary 1. Computing the worst-case loss for the
SCPM is a convex optimization problem. Furthermore, a
necessary and sufficient condition to guarantee a bounded
loss is that for all i and Es, v4Es5− si is bounded from above.

Below, we illustrate the applications of the above the-
orem through some examples. Detailed proofs for these
examples are available in Appendix A.

Example 2. Let the min-SCPM market be the one with
v4Es5 = mini si. For this market, the worst-case loss is 0
because C405 = mint8t − v4t Ee59 = 0, and for all i,
v4Es5− si ¶ 0. Observe that in this case, the market maker is
maximizing the worst-case profit, which represents extreme
risk averseness.

Example 3. Let the exponential-SCPM market with uni-
form prior be the one with v4Es5 = b

∑

i41/N5 ·

41 − e−si/b5. We can derive the cost function to be C4 Eq5=

b log4
∑

i41/N5 exp4qi/b55 and verify that B = b logN ,
C405= 0, giving a worst-case loss of b logN .

Example 4. For the log-SCPM, v4Es5 =
∑

i �i log4si5, if
�i > 0 for some i, then we can show that B is unbounded
by setting s1 = 11 si = �, and letting �→ �. We have:

B¾ lim
�→�

�1 log 1 +
∑

i 6=1

�i log4�5− 1 = �

and C405 =
∑

i �i −
∑

i �i log
∑

i �i. Thus, the worst-case
loss is unbounded in this case.

These examples provide a glimpse of how the value func-
tion encodes the risk averseness of the market maker. In
§3.4, we further confirm these insights by recasting our
optimization framework as a risk minimization problem.

3.4. Risk Minimization Formulation for SCPM

Each time he or she is offered an order, the market maker
must consider the risks involved in accepting it. This is
due to the fact that the monetary return generated from
the market depends on the actual outcome. In the earlier
pari-mutuel market introduced in Lange and Economides
(2005), this risk was effectively handled in terms of max-
imizing the worst-case return generated by the market rel-
ative to the set of outcomes (i.e., v4Es5 = mini si, refer to
Example 2). Unfortunately, this risk attitude is somewhat
limiting because it leads to a market that is likely to accept
very few orders and extract little information. In what fol-
lows, we consider the return generated by the market to be
a random variable Z and demonstrate that when he uses
SCPM with a nondecreasing value function, the market
maker effectively takes rational decisions with respect to
a risk attitude. We use duality theory to gain new insights
about how this attitude relates to the concept of prior belief
of market maker about the probability of outcomes.

In a finite, discrete probability space 4ì1F5, the set of
random variables Z can be described as the set of functions
Z2 ì→ <. A convex risk measure on the set Z is defined
as follows:

Definition 1. When the random variable Z represents a
return, a risk measure is a function �2 Z→ < that describes
one’s attitude towards risk as: random return Z is preferred
to Z′ if �4Z5¶ �4Z′5. Furthermore, a risk measure is called
convex if it satisfies the following:

• Convexity: �4�Z+41−�5Z′5¶ ��4Z5+41−�5�4Z′5,
∀Z1Z′ ∈Z, and ∀� ∈ 60117.

• Monotonicity: If Z1Z′ ∈ Z and Z ¾ Z′, then
�4Z5¶ �4Z′5.

• Translation Equivariance: If � ∈ < and Z ∈ Z, then
�4Z+�5= �4Z5−�.
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Convex risk measures are intuitively appealing. First,
even in a context where the decision maker does not know
the probability of occurrence for the different outcomes, it
is still possible to describe a risk function �4Z5. The three
properties of convex risk measures are also natural ones to
expect from such a function. Convexity states that diversi-
fying the returns leads to lower risks. Monotonicity states
that if the returns are reduced for all outcomes, then the
risk is higher. And finally, translation equivariance states
that if a fixed income is added to the random return, then
it is irrelevant whether this fixed income is received before
or after the random return is realized. We refer the reader
to Föllmer and Schied (2002) for a deeper study of convex
risk measures.

Next, we formulate the SCPM model for prediction mar-
kets as a convex risk minimization problem. In context of
prediction markets, let Z represent the random return for
the market organizer, which depends on the actual outcome
of the random event in question. Let Eq represent the total
orders held by the traders, and c represent the total money
collected so far from the traders in the market. Because
the market organizer has to pay $1 for each accepted order
that matches the outcome, his return for outcome state i is
c − qi. When a new trader enters with a bid of �, based
on the number of accepted orders x, the total return for
state i is given by 4c− qi +�x−aix5. The risk minimiza-
tion model seeks to choose the number of accepted orders
x to minimize the risk on total return. Below, we formally
show that the SCPM model is equivalent to a convex risk
minimization model.

Theorem 3. Let ì = 8�11�21 0 0 0 1�m9, EZ ∈ <m be the
vector representation of Z such that EZi = Z4�i5, and
Zx4�i5= c − qi +�x− aix. Then, given that v4 · 5 is non-
decreasing, the SCPM optimization model (3) is equivalent
in terms of the set of the optimal solutions for x to the risk
minimization model

minimize
x

�4Zx5

s0t0 0 ¶ x¶ l

with convex risk measure �4Z5= mint8t − v4 EZ+ t Ee59.

Proof. The equivalence can be obtained by first eliminat-
ing Es in (3), and then performing a simple change of vari-
able t = z−�x− c:

max
z

�x− z+ v
(

zEe− Eax− Eq
)

= max
t

−t + v
(

t Ee+ 4�x+ c5Ee− Eax− Eq
)

− c

= −min
t

{

t − v4 EZx
+ t Ee5

}

− c

= −�4Zx5− c0

Because maximizing −�4Zx5 − c over x is equivalent to
minimizing �4Zx5 in terms of optimal solution set, the
equivalence follows directly.

It remains to show that when v4 · 5 is concave and nonde-
creasing, the proposed measure satisfies the three properties
(convexity, monotonicity, and translational equivariance) of
a convex risk measure. The convexity and the monotonicity
follow directly from concavity and monotonicity of v4 · 5.
We refer the reader to Appendix B for more details on this
part of the proof. �

Remark 2. More importantly, Theorem 3 can be used to
show that any convex risk measure �4Z5 can potentially be
used to create a version of the SCPM market that accepts
orders according to the risk attitude described by �4Z5.
This is achieved by simply choosing the value function
v4Es5 = −�4Y Es5 where Y Es2 ì → < is a random variable
defined as Y Es4�i5 = si. Such a constructed v4 · 5 is neces-
sarily concave and increasing.

We just showed that the SCPM market actually repre-
sents a risk minimization problem for the market maker
when v4 · 5 is nondecreasing. In fact, we can get more
insights about the specific risk attitude by studying the dual
representation of risk measure �4Z5:

−�4Z5= min
Ep∈8 Ep � Ep¾01

∑

i pi=19
Ɛ Ep6Z7+L4 Ep51

where L4 Ep5 = maxEs v4Es5− EpT Es, and Ɛ Ep6Z7 =
∑

i pi
EZi. We

refer the reader to Föllmer and Schied (2002) for more
details on the equivalence of this representation. Note that
�4Z5 is evaluated by considering the worst distribution Ep
in terms of trading off between reducing expected return
and reducing the penalty L4 Ep5.

In terms of the SCPM, this representation equivalence
leads to the conclusion that orders are accepted accord-
ing to

max
0¶x¶l

(

min
Ep∈8 Ep � Ep¾01

∑

i pi=19

∑

i

pi
EZx
i +L4 Ep5

)

0

In this form, it becomes clearer how L4 Ep5 encodes the
intents of the market maker and relates it to his belief about
the true distribution of outcomes. For instance, we know
that the first order is accepted only if

∀ Ep∈

{

Ep � Ep¾01
∑

i

pi =1
}

1
∑

i

pi
EZx
i ¾−4L4 Ep5−L4p̂551

where p̂ = arg min Ep∈8 Ep � Ep¾01
∑

i pi=19L4 Ep5. For any given Ep,
the penalty L4 Ep5−L4p̂5 therefore reflects how much the
market maker is willing to lose in terms of expected returns
in the case that the true distribution of outcomes ends up
being Ep. It is also the case that after accepting Eq orders, the
distribution described by Ep∗ = arg min Ep EpT 4c Ee− Eq5+L4 Ep5
is actually the vector of dual prices computed in the SCPM.
In other words, the state price vector in the SCPM mar-
ket reflects the distribution that is being considered as the
outcome distribution by the market organizer in order to
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determine his expected return. This confirms the interpreta-
tion of prices as a belief consensus on outcome distribution
generated from the market.

As we will see next, the function L4 Ep5 is typically cho-
sen so that L4 Ep5 − L4p̂5 is large if Ep is far from p̂,
and p̂ reflects a prior belief of the market organizer. That is,
the market organizer is willing to lose some of his expected
return in order to learn a distribution Ep that is very different
from his prior belief. This is in accordance with the fact
that the market is being organized as a prediction market
rather than a pure financial market, and one of the goals of
a market organizer is to learn beliefs even if at some risk
of generating less returns.

We make the above interpretation clearer through the fol-
lowing examples.

Example 5. In the min-SCPM market, the value func-
tion v4Es5 = mini8si9 corresponds to cost L4 Ep5 =

maxs8mini8si9 − EpT Es9 = 0 for all Ep. That is, the market
organizer is purely maximizing his worst-case return.

Example 6. In the Exponential-SCPM market with uni-
form prior, the value function v4Es5 = b

∑

i41/N541 −

exp 4−si/b55 corresponds to the penalty function L4 Ep5 =

bLKL4 Ep�U5, which is the Kullback-Leibler divergence of Ep
from uniform distribution. This is minimized at Ep = U
reflecting a uniform prior. The corresponding risk measure
is also known as the entropic risk measure and its level of
tolerance to risk is measured by b. Later, we show that this
model is actually equivalent to the popular LMSR model.

Example 7. The log-SCPM uses v4Es5 =
∑

i �i log4si5,
which is equivalent to choosing the penalty function to be
L4 Ep5 = bLLL4 Ep�E�5 where b =

∑

i �i, �i = �i/
∑

i �i, and
LLL4 Ep� E�i5 = − log4

∏

i p
�i
i 5 + k. More specifically, L4 Ep5

can be interpreted as the negative log-likelihood that Ep is
the true distribution given a set of observations described by
the vector E�. This penalty function is minimized at Ep = E�
and tolerance to risk is measured by b.

These examples illustrate how the risk minimization rep-
resentation provides insights on how to choose v4 · 5. In the
case of Example 5, the associated penalty function leads
to a market where trades that might generate a loss for the
market maker are necessarily rejected. Hence, the traders
have no incentive for sharing their belief. On the other
hand, both the value function for the exponential-SCPM
and log-SCPM lead to mechanisms that accept orders lead-
ing to negative expected returns under a distribution Ep, as
long as this distribution is “far enough” from p̂. Effec-
tively, a trader with a belief that differs from p̂ will have
his order accepted given that he submits it early enough.
In practice, choosing between the exponential-SCPM and
the log-SCPM involves determining whether the Kullback-
Leibler divergence or a likelihood measure better charac-
terizes the market maker’s commitment to learning the true
distribution.

Remark 3. In some of these examples, the value func-
tion actually takes the “expected value” form, i.e., v4Es5 =
∑

i �iu4si5 for some probability vector E� > 0 such that
EeT E� = 1 and some one-dimensional increasing concave
mapping u4 · 5. This is the case for the log-SCPM mar-
ket, the exponential-SCPM market, and the linear-SCPM
market discussed later. When discussing the risk interpre-
tation of these cases, one needs to mention that they are all
members of a family of risk measures called optimized cer-
tainty equivalent and introduced by Ben-Tal and Teboulle
(2007). In practice, this family of convex risk measures
have become popular in many applied fields partly because
they can be easily defined and because the associated risk
minimization problem can be approximated using Monte
Carlo methods when the size of the outcome space becomes
large (or even infinite).

4. Relationship to Existing Mechanisms
In the last section, we showed that the SCPM, with properly
chosen value function, possesses many desirable properties
for designing a prediction market. The properties include
myopic truthfulness for the traders, bounded loss for the
market makers, and a controllable risk measure interpreta-
tion. In the following, we establish the relationship between
the SCPM and existing mechanisms. We show that many
existing mechanisms, including the market-scoring rules
and the utility-based market makers, are subsumed by our
SCPM framework.

4.1. Relationship to the Cost-Function
Based Markets

The cost-function based markets in their original formula-
tion do not involve bids (�) or limit (l) as in the SCPM.
A trader simply observes the current price and demands a
quantity w of his order Ea. The market organizer grants these
orders at price C4 Eq+w Ea5−C4 Eq5. We show that these mar-
kets are equivalent to the SCPM market in the following
sense:

Theorem 4. Any arbitrage-free cost-function based mar-
ket with convex cost function C4 Eq5 can be simulated as an
SCPM market with value function v4Es5 = −C4−Es5. Con-
versely, any SCPM market with value function v4 · 5 can be
simulated as an arbitrage-free cost-function based market
with convex cost function C4 Eq5= mint t − v4t Ee− Eq5.

Proof. Consider a cost-function based market with convex
cost function C4 · 5. Because the market is arbitrage free,
C4 Eq+ t Ee5= t+C4 Eq5 for any t. Let Eq denotes the currently
held shares. Consider an incoming trader who wishes to
buy w quantity of order Ea. In the equivalent SCPM market,
set v4Es5= −C4−Es5. And, the new trader’s order is 4�1 l1 Ea5
with � = ïC4 Eq+ Eaw5T Ea and l =w. To see that this SCPM
market simulates the original cost-function based market,
firstly note that because C4 · 5 is convex, v4 · 5 is a con-
cave function. Also, due to the no-arbitrage condition, −z+
v4Es5 = −z − C4−Es5 = −C4zEe − Es5. Therefore, the SCPM
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market decides the quantity of orders x to grant using the
following optimization problem (refer to (3)):

maximize
x1 z1 Es

�x−C4zEe− Es5

s0t0 zEe− Eax− Es = Eq

0 ¶ x¶w0

This is a convex optimization problem with KKT condi-
tions:

EpT
Ea+y¾�1 x ·4 EpT

Ea+y−�5=01

pi =ïC4 Eq+ Eax5i1 y ·4w−x5=01 y¾01 0¶x¶w0

Thus, x is increased until x = w, or the price EpT Ea =

ïC4 Eq + Eax5T Ea becomes greater than the bid price �.
Because � = ïC4 Eq + Eaw5T Ea, the optimal solution for x is
x∗ = w, i.e., the number of orders accepted is the same as
in the market based on the cost function C4 Eq5. Also, the
instantaneous price is Ep = ïC4 Eq + Eax5, which is the same
as in the cost-function based market.

To see that the price charged is the same, recall that
SCPM charges using the VCG scheme, where an incom-
ing trader with allocation x is charged CSCPM4 Eq + Eax5 −

CSCPM4 Eq5 with CSCPM4 Eq5 defined as (refer to Lemma 1)

CSCPM4 Eq5= min
t

t − v4t Ee− Eq50

For the proposed value function v4Es5 = −C4−Es5, this
reduces to

CSCPM4 Eq5= min
t

t−C4−t Ee+ Eq5= min
t

t− t+C4 Eq5=C4 Eq50

Thus, at any point the two markets accept the same quantity
of orders and charge the same price to an incoming trader.

Similarly, to prove the other direction, consider an SCPM
market with value function v4 · 5, and an incoming trader
with order 4�1 l1 Ea5. In the equivalent cost-function based
market, C4 Eq5 = mint t − v4t Ee − Eq5 and the trader would
demand x∗ quantity of order Eq, where x∗ is the optimal
solution for the SCPM market. Following the same line of
argument as above, one can see that the two markets are
equivalent. �

4.2. Relationship to the Market Scoring Rule

The market-scoring rules (MSR) form a large class of pop-
ular pari-mutuel mechanisms. In this section, we demon-
strate a strong equivalence between the SCPM and the
market-scoring rule markets. Particularly, we show that:

Theorem 5. Any proper market-scoring rule with cost
function C4 · 5 can be formulated as an SCPM market
maker (3) with the concave value function v4Es5= −C4−Es5,
and the two market makers are equivalent in terms of the
orders accepted and the price charged for submitted orders.

Theorem 6. The SCPM with any value function v4 · 5 gives
an implicit proper scoring rule, as long as the value func-
tion has the property that its derivative spans the simplex
8Er2 EeT Er = 11 Er ¾ 09, that is, for all vectors Er in the simplex

∃Es1 ïv4Es5= Er0 (5)

Further, the implicit scoring rule is strictly proper if the
function v4 · 5 is smooth over the simplex.

Thus, the SCPM framework subsumes the class of proper
scoring rule mechanisms. Moreover, a proper scoring rule
based market can be created by simply choosing a value
function v4 · 5 that satisfies condition (5). As we shall
demonstrate later in this section, this condition is not dif-
ficult to satisfy or validate, thus provides a useful tool
to design market mechanisms that correspond to a proper
scoring rule.

We first prove the above theorems for general market
scoring rule based market, and then illustrate with two spe-
cific examples: the LMSR and the quadratic market scor-
ing rules.

4.2.1. Equivalence Between SCPM and the Market-
Scoring Rules (Theorem 5). To establish Theorem 5,
we use the cost-function formulation of market-scoring
rules discussed in Chen and Pennock (2007), and briefly
explained in §2.2. Theorem 4 established equivalence of
the SCPM to any cost-function based market as long as the
cost function is convex and satisfies the no-arbitrage con-
dition. Below we show that the cost function of any proper
scoring rule automatically satisfies these conditions. Thus,
Theorem 5 follows directly from Theorem 4 and the lemma
below.

Lemma 2. The cost function C4 · 5 for any proper scoring
rule has following properties:

1. C4 Eq5 is a convex function of Eq.
2. For any vector Eq and scalar d, it holds that: C4 Eq +

d Ee5= d+C4 Eq5.

Proof. To prove that C4 Eq5 is convex, it suffices to show
that for any Eq0 and Eq1, C4 Eq0 +� Eq15 is convex in �. We have
the following

dC4 Eq0 +� Eq15

d�
= Eq1 ·ïC�4 Eq0+� Eq15

= Eq1 ·p4 Eq0 +� Eq150

Therefore, it suffices to show that Eq1 · Ep4 Eq0 +� Eq15 is increas-
ing in �. In what follows, we denote Ep4 Eq0 +� Eq15 by Ep4�5
and C4 Eq0 +� Eq15 by C4�5. By the properness of S and the
first condition of (1), we have that for any �1 and �2,
∑

i

pi4�15Si4 Ep4�155¾
∑

i

pi4�15Si4 Ep4�255

⇒
∑

i

pi4�15
(

4 Eq0 +�1 Eq15i −C4�15+ ki
)

¾
∑

i

pi4�15
(

4 Eq0 +�2 Eq15i −C4�25+ ki
)

⇒ 4�1 −�25
(

Eq1 · Ep4�15
)

¾C4�15−C4�250 (6)
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Similarly,
∑

i

pi4�25Si4 Ep4�255¾
∑

i

pi4�25Si4 Ep4�155

⇒ 4�2 −�154 Eq1 · Ep4�255¾C4�25−C4�150 (7)

Then (6) and (7) yield

4�2 −�15
(

Eq1 · 4 Ep4�25− Ep4�155¾ 01

which guarantees that Eq1 · Ep4�25¾ Eq1 · Ep4�15 when �2 ¾ �1.
Thus, C4 Eq5 is convex in Eq for every cost function corre-
sponding to a proper scoring rule.

We prove part 2 by contradiction. Assume that
there exists Eq and d such that C4 Eq + d Ee5 > d +

C4 Eq5. Set Eq′ = Eq + d Ee. Then, Si4 Ep5 − Si4 Ep′5 =

4qi − q′
i5 − 4C4 Eq5 − C4 Eq′55 > 0 for all i, implying that

∑

i p
′
i4Si4 Ep5−Si4 Ep′55 > 0, which contradicts the proper-

ness of scoring rule S. Similarly, we can prove a con-
tradiction for C4 Eq + d Ee5 < d + C4 Eq5. Note that in Chen
and Pennock (2007), the second property was treated as an
assumption based on the principle of no arbitrage. Here,
we show that it can actually be derived from the properties
of the cost-function formulation itself. �

4.2.2. Properness of the SCPM (Theorem 6). In this
section, we prove that the SCPM mechanism is proper,
that is, it implicitly corresponds to scoring the reported
beliefs with a proper scoring rule, as long as the value func-
tion satisfies the spanning condition (5). Intuitively, in order
to ensure that the trader can report his true belief vector,
which can take any value in the simplex, it is necessary to
ensure that price ïv4Es5 can be set to that value for some Es.
Thus, ïv4Es5 must span the simplex. Below, we rigorously
prove that this condition is both necessary and sufficient to
ensure properness.

Proof of Theorem 6. By definition, a scoring rule S4 · 5
is proper if and only if, given that the true belief is Er , it is
optimal for a selfish trader to report belief, that is,

Er ∈ arg max
Ep

∑

i

riSi4 Ep50

In a cost-function based market, the traders do not directly
report a belief Ep. Instead, they buy shares Eq paying a price
equal to the difference of the cost function, and thus they
indirectly report the belief through the final price vector Ep.
For these markets, an implicit scoring rule is defined in the
following manner (Chen and Pennock 2007):

Si4 Ep5= qi −C4 Eq5+ ki ∀ i1

where q is such that pi = ¡C/¡qi ∀ i (also refer to Equa-
tion (1) in §2.2). Therefore, the properness condition in
terms of Eq is represented as

Ep∗ 2= ïC4 Eq∗5= Er1 (8)

where Eq∗
∈ arg max

Eq¾0

∑

i

ri4qi −C4 Eq55 (9)

for all distributions Er .

Intuitively, because the traders receive $1 for each share
of the actual outcome, the profit of traders under out-
come state i is qi −C4 Eq5. Thus, the “properness” condition
ensures that an optimal strategy for selfish traders is to buy
orders Eq so that the resulting price vector Ep is equal to their
actual belief Er . Now, the optimality conditions for (9) are

ri −
¡C4 Eq∗5

¡q∗
i

+�∗

i = 01 �∗

i ¾ 01 q∗

i ¾ 01

�∗

i q
∗

i = 01 ∀ i0

Thus, condition (8) is satisfied if there exists a positive
optimal solution to (9). As derived in Lemma 1, the cost
function of the SCPM mechanism is given by (4). There-
fore, the optimization problem (9) is equivalent to

max
Eq¾0

∑

i

ri4qi −C4 Eq55≡ max
Eq¾0

∑

i

ri

(

qi − min
t
8t − v4t Ee− Eq59

)

≡ max
Eq¾01 t

ErT 4 Eq − t Ee5+ v4t Ee− Eq5

≡ max
Es2 Es=t Ee−Eq1 Eq¾0

v4Es5− ErT Es

≡ max
Es

v4Es5− ErT Es0

As long as there exists an optimal solution Es∗ to the above
problem, we can set t∗ as a large positive value and set Eq∗ =

t∗ Ee−Es∗ > 0. Thus, condition (5), which requires that ïv4Es5
spans the simplex, ensures the properness. One can also
show that this is also a necessary condition. This concludes
our proof of Theorem 6. �

A concern, however, is that the price vector Ep∗ that max-
imizes the trader’s expected profit may not be unique. This
could be either because there are multiple subgradients of
the cost function C4 Eq5 at optimal Eq∗ resulting in multiple
price vectors Ep∗, or because there are multiple optimal Eq∗

and they all result in different corresponding price vectors
ïC4 Eq∗5. This is typically undesirable, because in this case,
either buying the orders Eq∗ associated with the true belief
Er is not the only optimal strategy for the traders, or even in
the case that the traders acquire Eq∗, the market maker is still
unable to recover the true belief. This situation is avoided
by the concept of strictly proper scoring rules. A scoring
rule is called “strictly proper” if the only optimal strategy
for traders is to honestly report the belief (Winkler 1969).
In terms of our market mechanism, it means that the opti-
mal price vector Ep∗ that satisfies conditions 485 and 495
must be unique. Because v4 · 5 is concave, it is easy to see
that a sufficient condition to ensure strict properness in the
SCPM is that v4 · 5 is a smooth function, that is, ïv4 · 5 is
continuous (over the simplex).

Example 8. For LMSR market maker, the cost func-
tion is known to be C4 Eq5 = b log 4

∑

i e
qi/b5 (Chen and

Pennock 2007). Thus, this market is equivalent to the
SCPM framework with value function v4Es5 = −C4−Es5 =

−b log 4
∑

i e
−si/b5. This scoring rule is known to be strictly
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proper (Hanson 2003). Note that our condition for proper-
ness is satisfied as well since v4 · 5 is smooth and

ïv4Es5=

[

e−si/b

∑

i e
−si/b

]

1

which clearly spans the simplex.

Example 9. A market maker using quadratic scoring rule
is equivalent to the SCPM framework with value func-
tion v4Es5 = −C4−Es5 = EeT Es/N − 41/4b5EsT 4I − 4EeEeT /N55Es.
This scoring rule is known to be strictly proper (Chen and
Pennock 2007). Our condition for properness is satisfied
since v4 · 5 is smooth and

ïv4Es5=

[

1
N

+
s̄ − si

2b

]

1

where s̄ = EeT Es/N . Thus, for any Er in simplex, we can set
si = −2bri to get ïv4Es5= Er .

Further examples from existing and new markets appear
in §5.

4.3. Relationship to the Expected Utility
Framework

In §2.3, we briefly discussed the utility-based market model
introduced in Chen and Pennock (2007). In this section, we
show that their utility-based market maker model is strictly
subsumed by our SCPM model. Our derivation is construc-
tive in the sense that we provide the means of constructing
an SCPM model that replicates the behavior intended from
a utility-based market.

Theorem 7. Any expected-utility based market maker rep-
resented by the triplet 4 E�1u1 k5 such that E�¾ 0,

∑

j �j = 1,
u4x5 is a nondecreasing concave utility function and
infx u4x5 < k < supx u4x5 can be formulated as an SCPM
model with the concave nondecreasing value function v4Es5
defined as the optimal value of the convex optimization
problem:

v4Es5 2= maximize
t

t (10a)

s0t0
∑

j

�ju4sj − t5¾ k0 (10b)

Proof. We first show that v4Es5 is a concave nondecreas-
ing function of Es and satisfies the conditions required in
the SCPM framework. Problem (10) is necessarily a con-
vex problem because it has a linear objective and a feasible
region that is convex because u4x5 is concave. By insert-
ing Lagrange multipliers, we can equivalently represent this
value function as

v4Es5= max
t

min
�>0

t +�

(

∑

j

�ju4sj − t5− k

)

0

In this form, we can see that v4Es5 is concave because it is
the maximum over t of a function that is concave jointly

in Es and t; this last fact is due to the inner term being the
minimum of concave functions that is known to be con-
cave. We also know that v4Es5 is nondecreasing, because for
each fixed � > 0 and t, the function t +�4

∑

j �ju4sj − t55
is nondecreasing in Es.

Based on Lemma 1 and Theorem 4, we know that the
SCPM market with v4Es5 is equivalent to a cost-function
based market that uses the cost function

CSCPM4 Eq5=min
r
r−v4re− Eq5

= inf
{

r−t
∣

∣

∣

∑

j

�ju4r−qj −t5¾k

}

=−v4−Eq50

We also know from Chen and Pennock (2007) that the
expected utility framework behaves exactly as a cost-
function based market with CUF4 Eq5 defined as the unique
mapping that satisfies:

∑

j �ju4CUF4 Eq5 − qj5 = k. Thus, if
we can show that

∑

j �ju4CSCPM4 Eq5 − qj5 = k, or more
specifically that

∑

j �ju4−v4−Eq5− qj5= k, then it is clear
that the expected utility framework market is replicated by
a SCPM market that uses v4Es5 as defined in (10).

Let x1 and x2 be values such that u4x15 < k < u4x25;
these values exist because k was assumed to be in the inte-
rior of the range of u4 · 5. For any Eq, because u4x5 is non-
decreasing, we know that for t1 = −x1 − minj qj and t2 =

−x2 − maxj qj , it is necessary that
∑

j �ju4−t1 − qj5 < k <
∑

j �ju4−t2 −qj5. Because u4x5 is continuous by definition,
the intermediate value theorem guarantees us that there
exists a t̄ ∈ 6t21 t17 such that

∑

j �ju4−t̄−qj5= k. We con-
clude that the optimal value of Problem (10) with Es = −Eq,
let’s call it t∗ = v4−Eq5, is such that

∑

j �ju4−t∗ − qj5= k;
otherwise, the expected utility with t∗ would need to be
strictly greater than k and, because u4x5 is nondecreasing,
t̄ would necessarily outperform t∗. �
Example 10. In Chen and Pennock (2007), the authors
proposed using the hyperbolic absolute risk aversion
(HARA) class of utility functions to represent the market
maker’s risk aversion in the context of a subjective proba-
bility vector E�. Based on the result presented in Theorem 7,
we know that the SCPM mechanism with

v4Es5 2= maximize
t

t

s0t0
∑

i

�i

(

1
1 −�

(

�4M +
�

�
4si − t5

)1−�

− 1
)

¾ k1

where M is a real number, � is an extended real number,
and � > 0 implements an equivalent market. The theory
developed for the SCPM mechanism also tells us that for
any member of the HARA, one can compute its associated
worst-case loss bound by solving a convex optimization
problem.

We just showed that the utility-based market makers
are subsumed by the market makers in the SCPM frame-
work. In the following example, we show that the reverse
is not true.
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Lemma 3. The three-outcome SCPM market defined by the
value function

v4Es5= max
Ed¶Es

− EdTA Ed+
EeT Ed

3
with A=







1 −1 0

−1 2 −1

0 −1 1







cannot be replicated in the utility framework of Chen and
Pennock (2007), described in §2.3.

Proof. After some transformation, we have that the SCPM
market with such a value function behaves according to the
cost-function based market with

C4 Eq5 2= minimize
t1 Ed

t + EdTA Ed−
EeT Ed

3
(11a)

s0t0 Ed¶ t Ee− Eq0 (11b)

Now we compute the prices at Eq = 0 and Eq′ = 6111107T ,
respectively. By construction of the cost function, we know
that the instantaneous prices generated at Eq must be equal
to the optimal assignment of dual variables associated
with constraint (11b). Thus, 4 Ep1 Eq5 should satisfy the KKT
conditions:

EeT Ep = 1

2A Ed−
Ee

3
+ Ep = 0

Ed¶ t Ee− Eq

Ep¾ 0

EpT 4 Ed− t Ee+ Eq5= 00

We can show that 8 Eq = 01 Ed = 01 t = 01 Ep = Ee/39 and 8 Eq =

6111107T 1 Ed = 611117/67T 1 t′ = 21 Ep = 61/312/3107T 9 sat-
isfy these conditions, and the price is unique for both Eq.
Therefore, we know that Ep405 = Ee/3 and Ep46111107T 5 =

61/312/3107T . We now show by contradiction that there
exists no expected utility framework that can replicate these
prices.

Assuming that there exists an expected utility frame-
work that can replicate such a cost-function based market,
then it must accept the same orders and generate the same
instantaneous prices. In the utility framework, according
to Chen and Pennock (2007) the instantaneous prices gen-
erated after accepting a vector of order Eq are

pi =
�iu

′4mi5
∑

j �ju
′4mj5

=
�iu

′4C4 Eq5− qi5
∑

j �ju
′4C4 Eq5− qj55

∀ i0

Necessarily, in this market when Eq orders are accepted, if
pj > 0, then

pi

pj

=
�iu

′4C4 Eq5− qi5

�ju
′4C4 Eq5− qj5

∀ i0

Because we showed that in the market that this utility
framework imitates Ep405 = Ee/3 and because

∑

i �i = 1, it

must be that E� = Ee/3:

�iu
′4C405− 05

�ju
′4C405− 05

=
1/3
1/3

= 1 ∀ i ⇒ �i = �j = 1/3 ∀ i1 ∀ j0

However, the market should also satisfy Ep46111107T 5 =

61/312/3107T and

u′4C46111107T 5− 15
u′4C46111107T 5− 15

= 1 6=
p1

p2

0

This is a contradiction; thus, such a utility framework can-
not exist. �

The SCPM framework therefore subsumes the set of
markets that can be obtained through the expected utility
framework. More importantly, because one can easily ver-
ify that in this counterexample, v4 · 5 is nondecreasing and
thus represents a valid risk attitude, it is actually the case
that the SCPM framework can represent risk attitudes for
the market maker that could not be implemented in Chen
and Pennock’s utility framework.

Remark 4. The relation between Chen and Pennock’s
framework and the SCPM is actually an intimate one, espe-
cially when we compare their respective cost function rep-
resentation. Based on Theorem 7, we can first derive that
the cost function associated with a utility-based market
model takes the form

C4 Eq5 2= minimize
t

t

s0t0
∑

i

�iu4t − qi5¾ k0

On the other hand, one can also show that any SCPM mar-
ket can be implemented using the cost function

C4 Eq5 2= minimize
t

t

s0t0 �4t Ee− Eq5¶ 01

where �4Ez5 = mint t − v4Ez + t Ee5 is the convex risk mea-
sure defined in Theorem 3. Notice how both cost functions
charge the minimum price that is required for the market
maker to preserve a constant level of risk exposure. How
risk is measured in each case leads, however, to an impor-
tant distinction. Because the utility framework relies on a
single utility function that is replicated symmetrically for
each outcome, and on subjective probabilities, it is known
to have important limitations in practice; in some cases,
subjective probabilities cannot be properly defined (see the
famous paradox in Ellsberg 1961). The convex risk measure
framework that we adopt resolves this issue, thus allowing
a richer and more accurate representation of market makers.

5. Implications for Existing and
New Market Mechanisms

We have shown that our unifying framework allows us
to better understand the connections between some of the
various market makers that have been recently introduced
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in the literature. However, our framework also gives many
insights into how a market maker could develop a new
mechanism to achieve his objectives for a market. In this
section, we utilize our framework to review a nonexhaus-
tive list of markets that can be implemented with the
SCPM framework. We describe how a market maker can
take insights from our development of the framework to
craft SCPM markets that will satisfy his requirements for
a market. Overall, we believe that these results can pro-
vide valuable guidance in designing cost-effective predic-
tion markets.

In terms of designing and evaluating markets, there are
several characteristics that must be considered. We view
the primary characteristics as being:

• Truthfulness—Does the market incentivize traders to
truthfully reveal their beliefs?

• Market maker’s loss—Does there exist a bound on the
worst-case loss for the market maker?

• Convex risk measure—Does a convex risk measure
exist for the market?

• Learning—Does the market consider the benefits of
learning the price distribution from the traders?
In addition to these factors, the market maker would typi-
cally be concerned about the amount of liquidity created by
the market. In this work, we have not addressed that issue,
but it would be an interesting topic for further study.

Table 1 summarizes conditions on SCPM and their con-
sequences with respect to these characteristics. Next, we
use these observations to evaluate various existing market
mechanisms and design new mechanisms.

5.1. Evaluating Current Markets

We will initially revisit popular mechanisms in the context
of their SCPM equivalent and contrast the properties that
they exhibit. Detailed proofs of each property are available
in Appendix A.

5.1.1. Min-SCPM Market. Our first market mecha-
nism is the most conservative and represents the objective
of minimizing the worst-case loss of the market maker.
Here, value function v4Es5= mini si. The set of subgradients
at Es = Ee is the convex hull of orthogonal vectors 8Eei9

n
i=1

where Eei denotes a vector with 1 at position i and 0 else-
where. This convex hull is exactly the simplex. Thus, the
scoring rule associated with this SCPM is proper, but not
strictly proper. On the other hand, as shown in Exam-
ple 2, the resulting market is the most conservative one with
respect to a market maker because it guarantees him no

Table 1. A summary of conditions on SCPM and their consequences.

Condition on SCPM Consequence

VCG pricing ⇒ Truthfulness, cost-function equivalence, scoring rule equivalence
VCG pricing +ïv4s5 spans the simplex ⇒ Properness
VCG pricing +ïv4s5 spans the simplex and smooth ⇒ Strict properness
v4s5 nondecreasing ⇒ Risk minimization equivalence

loss. From a learning perspective, this formulation creates a
constant penalty function in the dual representation. Thus,
in this market there are no incentives to accept any orders
from traders with beliefs different from the prior belief of
the market maker.

5.1.2. Linear-SCPM Market. In some cases, the mar-
ket maker may explicitly know the probabilities for the
various outcomes or have very strong beliefs about these
probabilities. In this situation, he may desire to employ
a market mechanism that is focused on maximizing his
expected return based on these beliefs. Consider a lin-
ear value function v4Es5 = E�T Es such that E� ¾ 01 E�T Ee = 1 to
ensure that the SCPM model is well defined. This mecha-
nism is not proper, because the derivative of the function is
a constant vector, and does not span the simplex. Its associ-
ated cost function is C4 Eq5= −E�T Eq, and it does not provide
any loss bound:

B+C405= max
i

max
Es
8 E�T

Es − si9¾ max
i

max
si

4�i − 15si = �1

because it must be that for some i, the component �i is not
equal to one. If E� is positive, then it is a risk minimization
market with

L4 Ep5= max
Es
8 E�T

Es − EpT
Es9=

{

0 if Ep = E�

� otherwise0

However, it is one of the most risk-taking markets. In fact,
the expected loss is only bounded for the case where the
true probability is exactly E�. This is because this SCPM
accepts orders purely in terms of expected returns with
respect to the distribution described by E�.

5.1.3. Log-SCPM Market. For the Log-SCPM pre-
sented in Peters et al. (2007), the value function is v4Es5 =
∑

i �i log si, and ïv4Es5i = �i/si, which clearly spans the
interior of the simplex for any positive E�. Also, v4 · 5 is
smooth; thus, this mechanism is strictly proper. As pre-
sented in Example 7, L4 Ep5 is measured in terms of like-
lihood distance, which causes the worst-case loss to be
unbounded.

5.1.4. Exponential-SCPMMarket. In an exponential-
SCPM market, the market maker characterizes his future
value for surplus shares Es with function v4Es5= b

∑

i �i41 −

e−si/b5. One can show that the exponential-SCPM is asso-
ciated to the cost function, C4 Eq5 = b log4

∑

i �ie
qi/b5. The

exponential-SCPM market is actually equivalent to the
original logarithmic market scoring rule (LMSR) proposed
by Hanson (2003), even though the cost function associ-
ated with exponential-SCPM is not the usual one that is
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presented for LMSR (i.e., C4 Eq5= b log4
∑

i e
qi/b5). By sim-

ple algebra, one can show that although our more general
cost function can potentially charge a different price for
an order, both functions do satisfy the conditions given by
Chen and Pennock (2007) for a cost function to represent
an LMSR market (see Equation (1)).2

As derived in Hanson (2003), we can verify the strict
properness of the associated scoring rule and the worst-
case loss bound, which takes the form b log41/mini8�i95.
However, in Hanson (2003) the authors did not know that in
an exponential-SCPM or LMSR market, the market maker
actually measured risks using Kullback-Leibler divergence
from a prior belief E�: L4 Ep5 = LKL4 Ep�E�5. In the LMSR
market based on the typical cost function mentioned earlier,
the market maker assumes a uniform prior.

Remark 5. Note that different utilities can lead to equiva-
lent markets. In particular, for any concave value function
v4Es5 that is associated to a cost function C4 Eq5 as defined in
Equation (4), one can instead construct an SCPM market
with ũ4Es5= −C4−Es5, which is associated to the same cost
function because C4 Eq5 = mint8t − ũ4t Ee − Eq59 = mint8t +

C4 Eq − t Ee59 = C4 Eq5. This is, for example, the case for
the value functions v4Es5 = − log441/N5

∑

i exp4−si55 and
v4Es5 =

∑

i41/N541 − exp4−si55, which both share the cost
function C4 Eq5 = log4

∑

i41/N5 exp4qi55. In light of this,
when one designs a market, the value function v4Es5 is eas-
ier to choose than picking a cost function that is convex and
satisfies the no arbitrage condition C4 Eq + r Ee5=C4 Eq5+ r .

5.1.5. Quadratic Scoring Rule Market. Another
common scoring rule is the quadratic scoring rule. In a
similar manner to the LMSR, a market mechanism can
be developed using the quadratic scoring rule as its foun-
dation. A market maker using the quadratic scoring rule
is equivalent to the SCPM framework with value function
v4Es5 = −C4−Es5 = EeT Es/N − 41/4b5EsT 4I − 4EeEeT /N55Es. Our
results confirm that this scoring rule is strictly proper, as
demonstrated in Chen and Pennock (2007), and that the

Table 2. A summary of properties of various market mechanisms (when E� = 41/N5Ee).

Convex risk
Truthful Worst cost Measure L4 Ep5 Properness

Min-SCPM Yes 0 Yes 0 Proper
Linear-SCPM Yes � Yes 0 or � Not proper
Log-SCPM Yes � Yes bLLL4 Ep�U5 Strictly proper
LMSR Yes b logN Yes bLKL4 Ep�U5 Strictly proper
Exponential-SCPM Yes b logN Yes bLKL4 Ep�U5 Strictly proper

Quad. scoring rule Yes b
N − 1
N

No — Strictly proper

Quad-SCPM Yes b
N − 1
N

Yes b� Ep−U�2
2 Strictly proper

P-Linear-SCPM Yes b
N − 1
N

Yes
b

2
� Ep−U�1 Proper

worst-case loss is 4b4N − 155/N . Unfortunately, this mar-
ket does not have a valid risk interpretation and can actually
lead to a negative price vector. In practice, it is typical to
implement a perturbed version of this rule, which restricts
the price that is charged to be positive. Unfortunately, no
analysis has yet been done on the consequence of using
this perturbed quadratic scoring rule market.

Thus, we are able to describe the key characteristics of
these mechanisms by using insights from our framework.
Table 2 summarizes the conclusions we derived for these
mechanisms.

5.2. New Market Design

In this section, we demonstrate applications of our uni-
fied tool for designing new market mechanisms with desir-
able properties. Because all the properties of a mechanism
in our framework are characterized by the properties of
the value function, the mechanism design problem reduces
to picking an appropriate concave value function. As a
result, we design the Quad-SCPM mechanism, a much-
improved version of the existing quadratic scoring rule, and
P-linear-SCPM, an improvement over linear-SCPM. Both
are obtained by slightly modifying the value function used
in the original markets to remove their negative traits. The
generalization of LMSR to Exp-SCPM discussed in the
last section is another example where our framework was
used to improve and extend popular mechanisms. Quad-
SCPM is a particularly interesting new market because
it simultaneously achieves the properties of nonnegative
prices, strict properness, bounded loss (independent of the
number of states), and intuitive risk measure. None of
the existing mechanisms provided all of these properties
simultaneously.

As another approach for new market design, we will
focus on the development of market mechanisms that
emphasize the learning of specific distribution information
from the trading population. This will use the theory devel-
oped in §3.4 to capture the risk attitude of the market maker
using specific value functions.
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5.2.1. Quad-SCPM Market. Our unified analysis of
the SCPM model allows us to suggest a modification to
the prediction market that uses a quadratic scoring rule.
Although this rule is known to be myopically truthful, in
practice a market maker that uses this rule needs to explic-
itly restrict prices to be between 0 and 1 at all times.
A solution to this problem is to use an SCPM market with
the following semiquadratic nondecreasing value function.
Consider the “quad-SCPM” obtained from using the fol-
lowing value function:

v4Es5= max
Ed¶Es

E�T Ed−
1

4b
EdT Ed

for some E� such that E� ¾ 01
∑

i �i = 1. This value function
is nondecreasing and concave, which ensures that result-
ing prices are nonnegative. It has bounded worst-case loss
given by b4�E��2

2 + 1 − 2 mini �i5. The distance from the
prior p̂ = E� is measured by L4 Ep5= b� Ep− E��2

2, which is the
2-norm distance. The resulting prediction market is myopi-
cally truthful and leads to orders that can be priced using
the cost function:

C4 Eq5= min
t1 Ed¶t Ee−Eq

t − E�T Ed+
1

4b
EdT Ed1

which requires solving a quadratic program. Also, the cor-
responding scoring rule is strictly proper.

One can verify that the above market is closely related to
the quadratic scoring rule market, because C4 Eq5 reduces to
the quadratic scoring rule cost function when E� = Ee/N , and
the constraint Ed¶ t Ee− Eq is replaced with Ed = t Ee− Eq. How-
ever, the quad-SCPM market always has positive prices and
has an intuitive interpretation in terms of distance to the
prior belief. Because the worst-case loss is actually natu-
rally bounded by a value b that does not depend on the
size of the outcome space, the quad-SCPM seems to be the
perfect choice for markets with infinite outcome space.

5.2.2. P-Linear-SCPM Market. Next, we consider an
improved version of linear-SCPM market discussed earlier.
We show that a small modification to the value function
can handle the problem of unbounded loss in this market.
We call the new market P-linear-SCPM, which stands for
piecewise-linear SCPM. The “P-linear-SCPM” is obtained
by using the following piecewise-linear value function:

v4Es5=







∑

i

�i min401 si5 if Es ¾−b Ee

−� otherwise0

for some E� such that E� ¾ 01
∑

i �i = 1. This value function
is concave, nondecreasing and separable. It has a bounded
worst-case loss equal to b41 − mini �i5. The market is
known to be myopically truthful when the orders are priced
using the convex cost function

C4 Eq5= min
t Ee¾ Eq−b Ee

{

t −
∑

i

�i min401 t − qi5

}

1

which only requires solving a simple linear program. An
interesting property of this market is that the risk interpre-
tation is characterized using the “total variation” distance
from the prior E�2 L4 Ep5= 4b/25� Ep− E��1. In contrast to lin-
ear SCPM, the P-linear mechanism is proper (although not
strictly proper).

5.2.3. Distribution Information Learning Markets.
In this section, we focus on the development of new market
mechanisms that emphasize the learning of specific distri-
bution information from the trading population. Typically,
markets have been designed to learn the probability that
each outcome occurs. When the outcome space becomes
large, this cannot be achieved anymore. Instead, one needs
to deal with the fact that he can only learn a subset of
information about the distribution. In this case, the theory
developed in §3.4 can be used to define a value function

v4Es5= min
Ep¾0

{

EpT
Es +L4 Ep5

}

for some well-designed convex penalty function L4 Ep5 that
encodes one’s learning priorities.

For instance, a priority of the market might be to learn
the mean of a random vector X defined over the space of
outcomes. It is actually the case that an SCPM market that
uses a value function constructed from the penalty func-
tion L4p5= b�

∑

i pi
EX4i5− E��2 will achieve this objective.

Intuitively, such an SCPM market invests in learning that
the mean of the random vector EX is not close to an esti-
mate E�. Actually, the quad-SCPM market is a simple case
of this approach with EX4i5 ∈ <N such that Xj4i5= 1 if i = j
and 0 otherwise, which learns the probability distribution
of a discrete set of outcomes. In the case that the outcome
space is large, i ∈ 81121 0 0 0 1N 9, one can consider EX ∈ <K ,
for some K �N , such that

EXj4i5=

{

1 if i ∈Pj

0 otherwise1

where 8P11P21 0 0 0 1PK9 is a partition of 81121 0 0 0 1N 9. The
resulting SCPM market will learn the probability that the
outcome falls in each of the K partitions and has worst-case
loss again bounded by b. In theory, this approach can even
be extended to an infinite outcome space and more complex
definitions for EX with the guarantees that worst-case loss
is bounded by 2b times the square of the largest achievable
norm for EX. In practice, however, one needs to also make
sure that the resulting cost function can be evaluated (or
approximated) efficiently for the type of orders that are
submitted.

6. Conclusion
In this work, we introduced a unified convex optimization
framework for constructing prediction market mechanisms.
We first showed that in this new framework, the pricing
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mechanism always allows truthful orders (in a myopic
sense) to be a strategy that is optimal for the traders. Also,
the pricing mechanism can be computed efficiently using
a convenient convex cost function formulation. We showed
how markets using scoring rules or Chen and Pennock’s
utility framework could be cast in this rich unifying frame-
work. These popular mechanisms and the original Log-
SCPM mechanism actually differ only in terms of the
choice of a value function for the generalized SCPM frame-
work. We also showed how to analyze and compare the
properties of the markets obtained using any given value
functions: worst-case loss, risk attitude, and properness as
defined for scoring rules. Table 1 summarized conditions on
SCPM and their consequences with respect to these prop-
erties. Table 2 listed the conclusions we derived for various
mechanisms. We believe these properties are of particular
interest when designing a prediction market. In fact, our
study allowed us to derive the quad-SCPM market, which is
the first mechanism to implement properness, truthfulness,
risk control, and a constant loss bound simultaneously. The
results presented in this work also allow the possibility
of designing markets according to what the market maker
wishes to achieve in terms of learning and according to
how much he is willing to invest for this information.

We believe that our framework for designing dynamic
prediction markets has intimate connections to other
dynamic trading markets such as online auction of goods,
and could lead to interesting results for these markets as
well. In general, any dynamic resource allocation and pric-
ing scheme relies crucially on the trade-off between the
profit achieved by exploiting the resource now versus the
value of saving the goods for the future and exploring the
market further. This future value of resources is captured
in our framework by the concave value function v4 · 5. Our
risk-based formulation also formalized how this value func-
tion captures the trade-off between learning the preferences
of the traders versus maximizing instant profit via a penalty
function. This bears similarities to the classic exploration
versus exploitation trade-off for general trading markets.
Additionally, our mechanism achieves incentive compati-
bility using the VCG allocation and pricing scheme popular
for online auctions of goods. Further investigation of impli-
cations of our results on other trading and auction markets
is part of an ongoing research.

Appendix A. Properties of Various
SCPM Mechanisms

A.1. Properties of the Min-SCPM

• Worst-Case Loss: Necessarily,

C405= min
t
8t − min

i
ti9= 01 whereas

B = max
i

max
Es
8min

j
sj − si9= 00

Therefore, the worst-case loss is 0.

• Risk Attitude: The penalty function can be derived as
follows:

L4 Ep5= max
Es

{

min
i

si − EpT
Es
}

= max
Est¶si1∀ i

8t − EpT
Es9

= max
Es1 t

min
�
8t − EpT

Es +�T 4Es − t Ee59

= min
�

max
Es1 t

8t − EpT
Es +�T 4Es − t Ee59= 00

• Properness: The set of subgradients at Es = Ee is the
convex hull of orthogonal vectors 8Eei9

n
i=1 where Eei denotes

a vector with 1 at position i and 0 elsewhere. This convex
hull is exactly the simplex. Thus, the scoring rule associated
with this SCPM is proper, but not strictly proper.

A.2. Properties of the Log-SCPM

• Worst-Case Loss: The worst-case loss is unbounded
because C405= 4

∑

i �i541 − log
∑

i �i5 and B = �. Specif-
ically,

C405= min
t

{

t −
∑

i

�i log4t5
}

=

(

∑

i

�i

)(

1 − log
∑

i

�i

)

and

B = max
i

max
Es

{

∑

j

�j log4sj5− si

}

¾ lim
�→�

�1 log415

+
∑

j 6=1

�j log4�5− 1 = �1

where we restricted the optimization to s1 = 1 and sj = �,
∀j 6= 1 and assumed without loss of generality that �j 6= 0
for some j 6= 1.

• Risk Attitude: The penalty function L4 Ep5 can be
derived by simple algebra. Given that v4 · 5 has the form
v4Es5=

∑

i �i log4si5, we can show that

L4 Ep5= max
Es

{

∑

i

�i log4si5−pisi

}

=
∑

i

4�i log4�i/pi5−�i5

= −
∑

i

�i log4pi5+
∑

i

4�i log�i −�i5

=

(

∑

i

�i

)

LLL4 Ep�E�5+ k1

where �i = �i/
∑

i �i, and LLL4 Ep�E�5 = − log4
∏

i p
�i
i 5. As

∑

i �i increases the curvature of the negative log-likelihood
function increases. Thus, a higher

∑

i �i leads to more risk
tolerance.

• Properness: Here, ïv4Es5i = �i/si, which clearly spans
the interior of the simplex for any positive E�. Also, v4 · 5 is
smooth; thus, this mechanism is strictly proper.
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A.3. Properties of the Exponential-SCPM

• Cost function:

C4 Eq5= min
t

{

t − b
∑

i

�i41 − e4−t+qi5/b5

}

= min
t

{

t + be−t/b
∑

i

�ie
qi/b − b

∑

i

�i

}

0

Above is minimized at

∑

i

�ie
qi/be−t/b

= 1 ⇒ t∗ = b log
(

∑

i

�ie
qi/b

)

0

Thus,

C4 Eq5= b log
(

∑

i

�ie
qi/b

)

0

• Worst-Case Loss: First, we can verify that C405 = 0.
We then need to resolve that

B = max
i

max
Es

{

b
∑

j

�j41 − e−sj/b5− si

}

= max
i

max
Es

{

b− b
∑

j

�je
−sj/b − si

}

= max
i

max
si

{

b− b�ie
−si/b − si

}

= max
i
8b log41/�i590

Therefore, the worst-case loss is b log41/mini8�i95.
• Risk Attitude: We simply resolve the definition of

L4 Ep5.

L4 Ep5= max
Es

{

b
∑

i

�i41 − e−si/b5− EpT
Es

}

= b−
∑

i

min
si

8b�ie
−si/b +pisi9

= −b
∑

i

pi log4�i/pi5= bLKL4 Ep�E�50

• Properness: The function v4 · 5 is smooth, and the
gradient ïv4Es5i = �ie

−si/b. Clearly, the gradient spans the
simplex as long as �i > 0 for all i, thus, this is the only
condition for this mechanism to be strictly proper.

A.4. Properties of the LMSR

Because the LMSR generates the same market as the
exponential-SCPM, we refer the reader to §A.3, where we
derive all the properties of the exponential-SCPM.

A.5. Properties of the Quadratic
Scoring Rule

• Worst-Case Loss: When v4Es5 = EeT Es/N − 41/4b5EsT P Es
with P = 4I − 41/N5EeEeT 5, we first show that C405= 0, and
then that B = b41 − 41/N55:

C405= min
t
8t − v4t Ee59= min

t

{

t +
1

4b
t2

EeT P Ee− t

}

= 0

and

B = max
i

max
Es
8v4Es5− si9= v46−2b101 0 0 0 107T 5+ 2b

=
−2b
N

− b

(

1 −
1
N

)

+ 2b = b

(

1 −
1
N

)

0

• Risk Attitude: Because the derivative of v4Es5 =

41/N5EeT Es − 41/4b5EsT P Es is not nondecreasing, this version
of the SCPM does not have an equivalent representation
in terms of convex risk minimization. Specifically, when
Es = 42b10101 0 0 0 105, we can verify that ¡v4Es55/¡s1 = −1+

42/N5 < 0.
• Properness: Our condition for strict properness is sat-

isfied because v4 · 5 is smooth and

ïv4Es5=

[

1
N

+
4EeT Es/N5− si

2b

]

0

Thus, for any vector Er in the simplex, we can set si = −2bri
to get ïv4Es5= Er .

A.6. Properties of the Quad-SCPM

• Cost function: The cost function for this model
can only be expressed in its optimization form: C4 Eq5 =

mint1 Ew¶t Ee−Eq8t − E�T Ew− 41/4b5 EwT Ew9.
• Worst-Case Loss: First, one can show that C405= 0:

C405= min
t

{

t − max
Ew¶t Ee

{

E�T
Ew−

1
4b

EwT
Ew

}}

= min
t1 Ew

max
Ep¾0

{

t − E�T
Ew+

1
4b

EwT
Ew− EpT 4t Ee− Ew5

}

= max
Ep¾0

min
t1 Ew

{

t − E�T
Ew+

1
4b

EwT
Ew− EpT 4t Ee− Ew5

}

= max
Ep¾01 EeT Ep=1

8−b�E�− Ep�
2
29= 00

To compute B, we have

max
i

max
Es
8v4Es5− si9

= max
i

max
Es1 Ew¶Es

{

E�T
Ew−

1
4b

EwT
Ew− si

}

= max
i

max
Es1 Ew

min
Ep¾0

{

E�T
Ew−

1
4b

EwT
Ew− si + EpT 4Es − Ew5

}

= max
i

min
Ep¾0

max
Es1 Ew

{

E�T
Ew−

1
4b

EwT
Ew− si + EpT 4Es − Ew5

}

= max
i
8b44�i − 152

+ �E��2
2 − �2

i 59

= max
i
8b4−2�i + 1 + �E��2

259

= 2b
(

1
2 + 1

2�
E��2

2 − min
i

�i
)

0

Thus, the worst-case loss is 2b4 1
2 + 1

2�
E��2

2 −mini �i5, which
is actually never greater than b because, by definition, E� lies
in the simplex.
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• Risk Attitude: We simply resolve the definition of
L4 Ep5:

L4 Ep5= max
Es1 Ew¶Es

{

E�T
Ew−

1
4b

EwT
Ew− EpT

Es

}

= max
Es1 Ew

min
�¾0

{

E�T
Ew−

1
4b

EwT
Ew− EpT

Es +�T 4Es − Ew5

}

= b� Ep− E��2
20

• Properness: The value function v4Es5 at a given
Es ¾−b Ee is given by

maximize
Ed

1
N

E�T Ed−
1

4b
EdT Ed

s0t0 Ed¶ Es0

The partial derivative of this function with respect to si is
0 at si ¾ 2�ib/N , and �i/N − si/2b at si < 2�ib/N . There-
fore, gradient ïv4Es5i = max801 �i/N − si/2b9, which spans
the simplex and is continuous on the simplex. Thus, this
mechanism is strictly proper.

A.7. Properties of the P-Linear-SCPM

• Cost function: The cost function for this model
can only be expressed in its optimization form: C4 Eq5 =

mint1 t Ee−Eq¾b8t −
∑

i �i min401 t − qi59.
• Worst-case loss: The worst-case loss is maxi b41 − �i5

because one can show that

C405= min
t¾−b

{

t −
∑

i

�i min401 t5
}

= 01

and then compute B as follows:

max
i1 s

8v4Es5− si9= max
i1s¾−be

{

∑

j

�j min401 sj5− si

}

= max
i

{

max
si¾−b

�i min401 si5− si

}

= max
i
8b41 − �i590

• Risk Attitude: We simply resolve the definition of
L4 Ep5.

L4 Ep5= max
Es¾−b Ee

{

∑

i

�i min801 si9−pT s

}

=
∑

i

max
{

max
−b¶si¶0

4�i −pi5si1max
s¾0

−pisi

}

=
∑

i

max8max801 b4pi − �i5909

=
b

2
� Ep− E��10

• Properness: Consider Es = 0. The set of subgradients
of v405 is the convex hull of the set 80119n. Therefore, the
set of subgradients spans the simplex. However, the price
vector is not unique, so the mechanism is proper, but not
strictly proper.

Appendix B. Convexity of Risk
Measure �4 EZ5

• Convexity: Because �4Z5 = mint8t − v4t Ee + EZ59, and
v4 · 5 is concave, we know that �4Z5 is convex.

• Monotonicity: The monotonicity also simply results
from the monotonicity of v4 · 5. Given that EZ � EZ′, then

�4Z5= min
t

t − v4 EZ+ t Ee5¶ min
t

t − v4 EZ′ + t Ee5= �4Z′51

because the inequality is true for any fixed value of t.
• Translation equivariance: Finally, translation equivari-

ance can be simply demonstrated with a change of variable
t′ = t +�:

�4Z+�5= min
t

t − v4 EZ+ 4�+ t5Ee5

= min
t′

t′ −�− v4 EZ+ t′5

= �4Z5−�0

Endnotes
1. There is another technical condition on v4 · 5 that is
required for this model to be feasible and bounded. The
condition is that ∀ Eq ¾ 0, ∃t, ïv4t Ee − Eq5T Ee = 1, where
ïv4 · 5 denotes the (sub)gradient function.
2. First, one can establish the following relation between
the two cost functions:

C14 Eq5= b log
(

∑

i

eqi/b
)

C24 Eq5= b log
(

∑

i

�ie
qi/b

)

= b log
(

∑

i

eri/b
∑

i e
ri/b

eqi/b
)

= b log
(

∑

i

e4qi+ri5/b

)

− b log
(

∑

i

eri/b
)

=C14 Eq + Er5−C14Er51

where Er is such that E�i = eri/b/
∑

i e
ri/b. In general, this

relation ensures that the two cost functions can implement
the same scoring rule. Specifically, if C14 · 5 satisfies the
condition layed out by Chen and Pennock for a cost func-
tion to represent scroring rule S, then so does C24 · 5. First,
the relation between S and C14 · 5 implies that for all Ep in
the probability simplex, there exists a vector Eq such that
Si4 Ep5= qi −C14 Eq5 and pi = ¡C1/¡qi� Eq . However, it is also
the case that pi = ¡C2/¡qi� Eq′=Eq−Er . Thus, C24 · 5 is the cost
function for a scoring rule S′ that is equivalent to S:

S′

i4 Ep5= qi − ri −C24 Eq − Er5= qi −C14 Eq5+C14Er5− ri0
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