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Separating hyperplane theorem

The most important theorem about the convex set is the following separating theorem.

Theorem 1 (Separating hyperplane theorem) Let C ⊂ E , where E is a metric space either Rn or Mn,

be a closed convex set and let y be a point exterior to C . Then there is a point a ∈ E such that

a • y > sup
x∈C

a • x.
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Carathéodory’s theorem

Theorem 2 Given matrix A ∈ Rm×n and b ∈ Rm. If

{x : Ax = b,x ≥ 0}

is feasible. Then

b = ABxB , xB ≥ 0

where columns in AB are linearly independent chosen from a1,...,an of A.

The theorem is true whether or not A has a full row rank or not.
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Farkas’ Lemma

The following results are Farkas’ lemma and its variants.

Theorem 3 Let A ∈ Rm×n and b ∈ Rm. Then, the system {x : Ax = b, x ≥ 0} has a feasible

solution x if and only if that system {y : ATy ≤ 0, bTy > 0} has no feasible solution y.

A vector y, with ATy ≤ 0 and bTy > 0, is called an infeasibility certificate for the system

{x : Ax = b, x ≥ 0}.

Geometrically, Farkas’ lemma means that if a vector b ∈ Rm does not belong to the cone generated by

columns of A, then there is a hyperplane separating b from the cone cone(a.1, ...,a.n).

Example

Let A = (1, 1) and b = −1. Then, y = −1 is an infeasibility certificate for {x : Ax = b, x ≥ 0}.
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Farkas’ Lemma Variant

Theorem 4 Let A ∈ Rm×n and c ∈ Rn. Then, the system {y : ATy ≤ c} has a solution y if and

only if that system {x : Ax = 0, cTx < 0, x ≥ 0} has no feasible solution x.

Again, a vector x ≥ 0, with Ax = 0 and cTx < 0, is called a infeasibility certificate for the system

{y : ATy ≤ c}.

example

Let A = (1;−1) and c = (1;−2). Then, x = (1; 1) is an infeasibility certificate for {y : AT y ≤ c}.

5



Yinyu Ye, MS&E, Stanford MS&E310 Midterm Review

Farkas’ Lemma for General Cones?

Given ai, i = 1, ...,m, and b ∈ Rm.

Then, the system {x : ai • x = bi, i = 1, ...,m, x ∈ C} has a feasible solution x if and only if that

−
∑m

i yiai ∈ C∗ and bTy > 0 has no feasible solution y?

It is necessary but not sufficient!

Let’s write equations in a compact form:

Ax = (a1 • x; ...;am • x) ∈ Rm

and

ATy =
m∑
i

yiai.
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Alternative Systems for General Cones?

Alternative System Pair I?:

Ax = b, x ∈ C,

and

−ATy ∈ C∗, bTy = 1

Alternative System Pair II?:

Ax = 0, x ∈ C, c • x = −1(< 0)

and

c−ATy ∈ C∗
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When Farkas’ Lemma Holds for General Cones?

Let C be a closed convex cone in the rest of the course.

If there is y such that −ATy ∈ intC∗, then Alternative System Pair I is true:

Ax = b, x ∈ C,

and

−ATy ∈ C∗, bTy = 1

And if there is x such that Ax = 0, x ∈ intC , then Alternative System Pair II is true:

Ax = 0, x ∈ C, c • x = −1(< 0)

and

c−ATy ∈ C∗
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Duality Theory

Consider the linear program in standard form, called the primal problem,

(LP ) minimize cTx

subject to Ax = b, x ≥ 0,

where decision variables x ∈ Rn.

The dual problem can be written as:

(LD) maximize bTy

subject to ATy + s = c, s ≥ 0,

where y ∈ Rm and s ∈ Rn. The components of s are often called dual slacks.
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Duality Theory

Theorem 5 (Weak duality theorem) Let primal feasible set Fp and dual feasible set Fd be non-empty.

Then,

cTx ≥ bTy where x ∈ Fp, (y, s) ∈ Fd.

This theorem shows that a feasible solution to either problem yields a bound on the value of the other

problem. We call cTx− bTy the duality gap.

Theorem 6 (Strong duality theorem) Let primal feasible set Fp and dual feasible set Fd be non-empty.

Then, x∗ ∈ Fp is optimal for (LP) and (y∗, s∗) ∈ Fd is optimal for (LD) if and only if

cTx∗ = bTy∗.
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Theorem 7 (Primal-Dual relation theorem) If (LP) and (LD) both have feasible solutions then both

problems have optimal solutions and the optimal objective values of the objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either unbounded or has no feasible

solution either. If one of (LP) or (LD) is unbounded then the other has no feasible solution.

The above theorems show that if a pair of feasible solutions can be found to the primal and dual problems

with equal objective values, then they are both optimal, respectively.

The converse is also true; there is zero duality “gap’ if they are optimal.
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Duality and Complementarity Gaps

x ∈ Fp is optimal for (LP) and (y, s) ∈ Fd is optimal for (LD)

xT s = xT (c−ATy) = cTx− bTy = 0

implies that xjsj = 0 for all j = 1, ..., n, since both x and s are nonnegative. This is called the

complementarity gap.

xjsj = 0, ∀j
Ax = b

−ATy − s = −c.

This system has total 2n+m unknowns and 2n+m equations including n nonlinear equations.

Theorem 8 If both (LP) and (LD) are feasible, there exists a strictly complementary solution pair x and

(y, s) such that

xj + sj > 0, ∀j.
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Rules to Construct the Dual

obj. coef. vector right-hand-side

right-hand-side obj. coef. vector

A AT

Max model Min model

xj ≥ 0 jth constraint ≥
xj ≤ 0 jth constraint ≤
xj free jth constraint =

ith constraint ≤ yi ≥ 0

ith constraint ≥ yi ≤ 0

ith constraint = yi free
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Conic LP

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ C,

where C is a convex cone.

Linear Programming (LP): c,ai,x ∈ Rn and C = Rn
+

Second-Order Cone Programming (SOCP): c,ai,x ∈ Rn and C = SOC

Semidefinite Programming (SDP): c,ai,x ∈ Sn and C = Sn
+

Note that cone C can be a product of many (different) convex cones.
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Dual of Conic LP

The dual problem to

(CLP ) minimize c • x
subject to ai • x = bi, i = 1, 2, ...,m, x ∈ C.

is

(CLD) maximize bTy

subject to
∑m

i yiai + s = c, s ∈ C∗,

where y ∈ Rm are the dual variables, s is called the dual slack vector/matrix, and C∗ is the dual cone of

C .

Theorem 9 (Weak duality theorem)

c • x− bTy = x • s ≥ 0

for any feasible x of (CLP) and (y, s) of (CLD).
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CLP Duality Theories

The weak duality theorem shows that a feasible solution to either problem yields a bound on the value of

the other problem. We call c • x− bTy the duality gap.

Corollary 1 Let x∗ ∈ Fp and (y∗, s∗) ∈ Fd. Then, c • x∗ = bTy∗ implies that x∗ is optimal for

(CLP) and (y∗, s∗) is optimal for (CLD).

Is the reverse also true? That is, given x∗ optimal for (CLP), then there is (y∗, s∗) feasible for (CLD) and

c • x∗ = bTy∗?

This is called the Strong Duality Theorem and it is “true” for LP, but it is “False” in general cases.
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When Strong Duality Theorems Holds for CLP

Theorem 10 (Strong duality theorem) Let Fp and Fd be non-empty and at least one of them has an

interior. Then, x∗ is optimal for (CLP) and (y∗, s∗) is optimal for (CLD) if any only if

c • x∗ = bTy∗.

There are cases that the duality gap tends to zero but the optimal solution is not attainable.
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More Duality Theorem for CLP

Theorem 11 (CLP duality theorem) If one of (CLP) or (CLD) is unbounded then the other has no feasible

solution.

If (CLP) and (CLD) are both feasible, then both have bounded optimal objective values and the optimal

objective values may have a duality gap.

If one of (CLP) or (CLD) has a strictly or interior feasible solution and it has an optimal solution, then the

other is feasible and has an optimal solution with the same optimal value.
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Optimality Conditions for SDP

c •X − bTy = 0

AX = b

−ATy − S = −c

X,S ≽ 0

, (1)

XS = 0

AX = b

−ATy − S = −c

X,S ≽ 0

(2)
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Rank of SDP Solutions

At any optimal solution pair (X∗, S∗)

rank(X∗) + rank(S∗) ≤ n.

If the equality holds, they are a strictly complementary solution pair.

There are optimal solutions of X∗ and S∗ such that the rank of X∗ and the rank of S∗ are minimal,

respectively.

There are optimal solutions of X∗ and S∗ such that the rank of X∗ and the rank of S∗ are maximal,

respectively.

In certain applications, we want a solution who has the max-rank or the min-rank. Or we like to prove that

any solution must have a low rank, where one way to do is to show that the dual has a high rank solution...
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SNL: System of Quadratic Equations

System of nonlinear equations for xi ∈ Rd:

∥xi − xj∥ = dij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥ = dkj , ∀ (k, j) ∈ Na,

where ak are possible points whose locations are known, often called anchors.

One can equivalently represent it as

∥xi − xj∥2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

∥ak − xj∥2 = d2kj , ∀ (k, j) ∈ Na,

which becomes a system of multi-variable-quadratic equations.
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Matrix Representation of SNL

Let X = [x1 x2 ... xn] be the 2× n matrix that needs to be determined. Then

∥xi − xj∥2 = (ei − ej)
TXTX(ei − ej) and

∥ak − xj∥2 = (ak;−ej)
T [I X]T [I X](ak;−ej),

where ei is the vector with 1 at the ith position and zero everywhere else.

(ei − ej)
T (ei − ej) • Y = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)
T (ak;−ej) •

 I X

XT Y

 = d2kj , ∀ k, j ∈ Na,

Y −XTX = 0.

where Y denotes the Gram matrix XTX .
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SDP Relaxation

Change

Y −XTX = 0

to

Y −XTX ≽ 0.

This matrix inequality is equivalent to

Z :=

 I X

XT Y

 ≽ 0.

This is the semidefinite matrix cone, and the problem becomes an SDP Feasibility problem.
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SDP Feasibility Standard Form

Find a symmetric matrix Z ∈ R(2+n)×(2+n) such that

Z1:2,1:2 = I

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)
T • Z = d2kj , ∀ k, j ∈ Na,

Z ≽ 0.

This is semidefinite programming feasibility system (with a null objective).

When this relaxation is exact?

One case is that the single unknown point x1 is connected to three anchors ak, k = 1, 2, 3.

In general, if the rank of a feasible Z is 2, then it solves the original graph relaxation problem.
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Duality Theorem for SNL

Theorem 12 Let Z̄ be a feasible solution for SDP and Ū be an optimal slack matrix of the dual. Then,

1. complementarity condition holds: Z̄ • Ū = 0 or Z̄Ū = 0;

2. (Z̄) + (Ū) ≤ 2 + n;

3. (Z̄) ≥ 2 and (Ū) ≤ n.

An immediate result from the theorem is the following:

Corollary 2 If an optimal dual slack matrix has rank n, then every solution of the SDP has rank 2, that is,

the SDP relaxation solves the original problem exactly.
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Basic Feasible Solution of LP

In the LP standard form when A has a full row-rank, select m linearly independent columns, denoted by

the index set B, from A. Solving the m-dimension vector xB from

ABxB = b

and setting the rest variables, denoted by xN , to zero, we obtain a solution x such that

Ax = b.

Then, x is said to be a (primal) basic solution to (LP) with respect to the basis AB . The entries in xB are

called basic variables. If a basic solution x ≥ 0, then x is called a basic feasible solution.

If one or more components in xB have zero value, then the basic feasible solution x is said to be (primal)

degenerate.

The basic feasible solution is an extreme point of the feasible region. In general (i.e., A has no full

row-rank), any solution from ABxB = b, xB ≥ 0, where columns of AB are linearly independent, is an

extreme point of the feasible region.
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A dual vector y satisfying

AT
By = cB

is said to be the corresponding dual basic solution.

If the dual basic solution is also feasible, that is,

s = c−ATy ≥ 0

, then it is a dual Basic Feasible Solution.

If one or more slacks in cN −AT
Ny have zero value, that dual basic feasible solution y is said to be

(dual) degenerate.

The dual basic feasible solution is an extreme point of the dual feasible region. In general (i.e., A has no

full row-rank), any solution from AT
By = cB , c−ATy ≥ 0, where rows of AB are linearly

independent, is an extreme point of the dual feasible region.
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Theorem 13 (LP fundamental theorem) Given (LP) and (LD) where A has full row rank m,

i) if there is a feasible solution, there is a basic feasible or extreme solution ;

ii) if there is an optimal solution, there is an optimal basic feasible or extreme solution.
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The Simplex Algorithm

0. Initialize with a minimization problem in feasible canonical form with respect to a basic index set B. Let

N denote the complementary index set.

1. Test for termination: Compute the dual solution and reduced gradient vector

yT = cTBA
−1
B and r = c−ATy.

2. Check re = minj∈N{rj}. If re ≥ 0, stop. The solution is optimal. Otherwise determine whether the

column of Ā.e contains a positive entry. If not, the objective function is unbounded below. Terminate.

Let xe be the entering basic variable.

3. Determine the outgoing: execute the MRT to determine the outgoing variable xo or declare the

problem unbounded.

4. Update basis: update B and AB and compute xB = A−1
B b; return to Step 1.
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The Ellipsoid Method

The basic ideas of the ellipsoid method stem from research done in the nineteen sixties and seventies

mainly in the Soviet Union (as it was then called) by others who preceded Khachiyan. The idea in a

nutshell is to enclose the region of interest in each member of a sequence of ellipsoids whose size is

decreasing, resembling the bisection method.

The significant contribution of Khachiyan was to demonstrate in two papers—published in 1979 and

1980—that under certain assumptions, the ellipsoid method constitutes a polynomially bounded algorithm

for linear programming.
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Figure 1: The least volume ellipsoid containing a half ellipsoid
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Desired Theoretical Properties

• Separation Problem: Either decide the ellipsoid center yc ∈ P , where P is the target set, or find a

separating hyperplane a such that aTy ≤ aTyc for all y ∈ P .

• Oracle to generate a without enumerating all hyperplanes.

Theorem 14 If the separating (oracle) problem can be solved in polynomial time of m and log(R/r),

then we can solve the standard linear programming problem whose running time is polynomial in m and

log(R/r) that is independent of n, the number of inequality constraints.
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The Methodology Concept of Centers/Paths

Consider linear program

maximize bTy

subject to ATy ≤ c.

Consider an objective level set

Y (z0) := {y : ATy ≤ c, bTy ≥ z0},

and assume that it is bounded and has an interior.

Compute a “center”, y0, of the level set Y (z0), then move the objective hyperplane through y0, and now

consider the smaller level set

Y (z1) := {y : ATy ≤ c, bTy ≥ z1 = bTy0}

and repeat this process.
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Figure 2: Cur ot translation of a hyperplane through the center.
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LP with Barrier Function

Consider the LP problem with the barrier function

(LPB) minimize cTx− µ
∑n

j=1 log xj

s.t. x ∈ intFp

and

(LDB) maximize bTy −
∑n

j=1 log sj

s.t. (y, s) ∈ intFd,

where µ is called the barrier (weight) parameter.

They are again linearly constrained convex programs (LCCP).

Know how to derive the KKT conditions of the problem.
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Common Optimality Conditions for LPB and LDB

Xs = µe

Ax = b

−ATy − s = −c;

where we have

µ =
xT s

n
=

cTx− bTy

n
,

so that it’s the average of complementarity or duality gap.
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Figure 3: The central path of y(µ) in a dual feasible region.
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Central Path for Linear Programming

The path

C = {(x(µ),y(µ), s(µ)) ∈ intF : Xs = µe, 0 < µ <∞} ;

is called the (primal and dual) central path of linear programming.

Theorem 15 Let both (LP) and (LD) have interior feasible points for the given data set (A, b, c). Then for

any 0 < µ <∞, the central path point pair (x(µ),y(µ), s(µ)) exists and is unique.

The uniqueness proof is based on strict convexity of − log(.) function.
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Potential Function for Linear Programming

For x ∈ intFp and (y, s) ∈ intFd, the primal-dual potential function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑

j=1

log(xjsj),

where ρ ≥ 0.

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n log n,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption concerning the existence

of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big M penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and

optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an

infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems

A pair of LP has two alternatives

(Solvable) Ax− b = 0

−ATy + c ≥ 0,

bTy − cTx = 0,

y free, x ≥ 0

or

(Infeasible) Ax = 0

−ATy ≥ 0,

bTy − cTx > 0,

y free, x ≥ 0
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An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

(HP ) Ax− bτ = 0

−ATy + cτ = s ≥ 0,

bTy − cTx = κ ≥ 0,

y free, (x; τ) ≥ 0

where the two alternatives are

(Solvable) : (τ > 0, κ = 0) or (Infeasible) : (τ = 0, κ > 0)
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A HSD linear program

Let’s try to add one more constraint to prevent the all-zero solution

(HSDP ) min (n+ 1)θ

s.t. Ax −bτ +b̄θ = 0,

−ATy +cτ −c̄θ ≥ 0,

bTy −cTx +z̄θ ≥ 0,

−b̄Ty +c̄Tx −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free.

Note that the constraints of (HSDP) form a skew-symmetric system and the objective coeffcient vector is

the negative of the right-hand-side vector, so that it remains a self-dual linear program.

(y = 0, x = e, τ = 1, θ = 1) is a strictly feasible point for (HSDP).
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Sample Problem 1

Let A1 ∈ Rm×n, A2 ∈ Rm×p be two given matrices, and let c1 ∈ Rn, c2 ∈ Rp be two given

non-negative vectors. Consider the problem

min cT1 x1 + cT2 x2

s.t. A1x1 +A2x2 = b

x1, x2 ≥ 0,

and assume the problem is feasible.

(a) Sow that the problem has an optimal solution (x∗
1,x

∗
2).

(b) Let (x1,x2) be a feasible solution to the problem and its objective value equals bT y where y satisfies

AT
1 y ≤ α1c1

AT
2 y ≤ α2c2,
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where α1 and α2 are two scalars greater than or equal to 1, then

cT1 x1 + cT2 x2 = bTy ≤ α1 · cT1 x∗
1 + α2 · cT2 x∗

2.

(α1, α2) is usually called the bi-factor approximation ratio and used in approximating algorithms for

combinatorial optimization.
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(a) Consider the dual problem:

max bTy

subject to AT
1 y ≤ c1,

AT
2 y ≤ c2.

Since c1 ≥ 0 and c2 ≥ 0, y = 0 is a feasible point for the dual. By LP duality, since both the primal and

dual problems are feasible, both must have optimal solutions.
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(b) Let (x∗
1,x

∗
2) be a primal optimal solution, and let (x1,x2) be a primal feasible solution with value

c 1Tx1 + cT2 x2 = bTy, where y satisfies

AT
1 y ≤ α1c1, AT

2 y ≤ α2c2.

Since (x∗
1,x

∗
2) is primal feasible, A1x

∗
1 +A2x

∗
2 = b, and (x∗

1,x
∗
2) ≥ 0. Then,

(AT
1 y)

Tx∗
1 ≤ α1c

T
1 x

∗
1,

(AT
2 y)

Tx∗
2 ≤ α2c

T
2 x

∗
2.

Sum up all these inequalities, we have

bTy = (A1x
∗
1 +A2x

∗
2)

Ty = (AT
1 y)

Tx∗
1 + (AT

2 y)
Tx∗

2 ≤ α1c
T
1 x

∗
1 + α2c

T
2 x

∗
2.
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Sample Problem 2

Assume that all basic feasible solutions (BFS) of a standard LP problem are non degenerate (that is, every

basic variable has a positive value at every BFS). Then consider using the Simplex method to solve the

problem. Prove that, if at a pivot step there is exactly one negative reduced cost coefficient, then the

corresponding entering variable will remain as a basic variable for the remaining steps of the Simplex

method.
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Sample Problem 3

Consider the standard LP primal and dual pair. Prove that, if both of them have interior feasible solutions,

the optimal solution set is bounded.
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Sample Problem 4

Consider the RL/MDP fixed-point computation by linear program:

maximizey
∑m

i=1 yi

subject to y1 − γpT
j y ≤ cj , j ∈ A1

...

yi − γpT
j y ≤ cj , j ∈ Ai

...

ym − γpT
j y ≤ cj , j ∈ Am.

Prove at the optimal solution y∗:

y∗i = min
j∈Ai

{cj + γpT
j y

∗} ∀i

What is the dual of the problem? What is the sum of a feasible solution of the dual?
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