
MS&E 310 Project: Markov Decision Process

Maxwell Allman
mallman@stanford.edu

Jamie Kang
jamiekang@stanford.edu

December 11, 2017

1 Introduction

Markov Decision Processes (MDPs) can be formulated as the following primal and dual
Linear Programming problems:

min
x

∑
j∈A1

cjxj+...+
∑
j∈Am

cjxj

s.t.
∑
j∈A1

(e1 − γpj)xj+...+
∑
j∈Am

(em − γpj)xj = e (1)

xj ≥ 0,∀j
(2)

max
y

eTy =
m∑
i=1

yi

s.t. y1 − γpTj y ≤ cj, j ∈ Ai
...

yi − γpTj y ≤ cj, j ∈ Ai (3)

...

ym − γpTj y ≤ cj, j ∈ Am

where m: number of states, Ai: set of all actions available in state i, pj: state transition
probabilities from state i to all states, cj: immediate cost when action j is taken, γ: discount
factor between 0 and 1, xj: state-action frequency.

In the following sections, we prove some useful theoretical properties and examine the
convergence rates of several Value Iteration variant methods.

1

2 Theoretical Results

Question 1. Prove that in MDP LP formulation, every basic feasible solution represent a
policy, i.e., the basic variables have exactly one variable from each state i. Furthermore,
prove each basic variable value is no less than 1, and the sum of all basic variable values is
m

1−γ .

Proof. Since the LP has m constraints, each BFS has at most m non-zero values. Now, the
ith constraint gives ∑

j∈Ai

xj −
∑

j∈A1∪...∪Am

γ(pjxj)i = 1

Since (pjxj)i ≥ 0 for all j and i, this implies∑
j∈Ai

xj ≥ 1

So, the basic variables must include at least one variable for each state i. But since there
are at most m basic variables, the basic variables have exactly one variable from each state
i. Thus, to satisfy

∑
j∈Ai

xj ≥ 1, each basic variable must have value at least 1. Finally, the
sum of the left hand sides of each of the m constraints is

S =
∑

j∈A1∪...∪Am

(xj −
m∑
i=1

(γpjxj)i) =
∑

j∈A1∪...∪Am

(xj − γ
m∑
i=1

(pj)ixj))

But since the entries of pj sum to 1, we get
∑m

i=1(pj)i = 1, so

S =
∑

j∈A1∪...∪Am

xj − γxj = (1− γ)
∑

j∈A1∪...∪Am

xj

The sum of the left hand sides of the m constraints must equal the sum of the right hand
sides, so

(1− γ)
∑

j∈A1∪...∪Am

xj = m

=⇒
∑

j∈A1∪...∪Am

xj =
m

1− γ

Since
∑

j∈A1∪...∪Am
xj is the sum of all the basic variable values, the sum of all the basic

variable values is m
1−γ .

Question 2. Prove the contraction result of the Value Iteration method.

Proof. In order to prove ||yk+1 − y∗||∞ ≤ γ||yk − y∗||∞, we first rewrite the LHS as:

max
i
{|min

j
(cj + γpTj y

k)−min
j

(cj + γpTj y
∗)|}

which is equivalent to

max
i
{| −max

j
(−cj − γpTj yk) + max

j
(−cj − γpTj y∗)|}.

2

Reorganizing the two terms we have

max
i
{|max

j
(−cj−γpTj y∗)−max

j
(−cj−γpTj yk)|} ≤ max

i
{|max

j
(−cj−γpTj y∗−(−cj−γpTj yk))|}.

This is due to: max f(x)−max g(x) ≤ max f(x)− g(x) ≤ max(f(x)− g(x)). Furthermore,
the cj terms cancel out each other, and thus we can simplify the above expression to

max
i
{|max

j
(γpTj y

k − γpTj y∗)|} = γmax
i
{|max

j
(pTj y

k − pTj y∗)|}

≤ γmax
i
{max

j
|pTj yk − pTj y∗|}

= γmax
i
|yk − y∗|max

j
pTj

≤ γmax
i
|yk − y∗|

= γ||yk − y∗||∞

where the second last inequality is due to pj being some proability measure, and thus
maxj p

T
j ≤ 1.

Question 3. Assuming that y0 ≥ y∗ and y0 ≥ y1, prove the entry-wise monotone property:
y∗ ≤ yk+1 ≤ yk,∀k.

Proof. For the statement of this problem to be true, we must assume that entry-wise, y1 ≤ y0.
Now, as an induction hypothesis, suppose that entry-wise yk ≤ kk−1 for some k. Then

yk+1
i = min

j∈Ai

{cj + γpTj y
k}

but since yk ≤ yk−1, and for all j the entries of pj are non-negative, we have

pTj y
k ≤ pTj y

k−1

for all j. Thus,
yk+1
i = min

j∈Ai

{cj + γpTj y
k} ≤ min

j∈Ai

{cj + γpTj y
k−1} = yki

So, yk+1 ≤ yk entry-wise, and since y1 ≤ y0 entry-wise by assumption, we get by induction
that yk+1 ≤ yk for all k.

Now, assume yk ≥ y∗ entry-wise. Then as before, for all j,

pTj y
∗ ≤ pTj y

k

so
yk+1
i = min

j∈Ai

{cj + γpTj y
k} ≥ min

j∈Ai

{cj + γpTj y
∗} = y∗i

Thus, yk+1 ≥ y∗ entry-wise, and since y0 ≥ y∗, we have by induction that yk ≥ y∗ for all
k.

3

yyye
Cross-Out

yyye
Inserted Text
y

yyye
Comment on Text
Correct assumption to make the result true, and it is possible to choose y^0 uniformly and componently large.

3 Value Iteration variants and numerical experiments

In this section, we introduce several variants of the Value Iteration method that may poten-
tially improve the algorithm’s convergence rate. We then perform some numerical experi-
ments using MATLAB. Markov chains are randomly generated for the pre-specified param-
eters – number of state, number of actions per state, and number of next states an action
result in. Namely, parameters such as probability matrix P , state-action pair matrix, cost
C(i, i′, j)(and thus action cost in each state i cj =

∑
j P (i, i′, j) ∗C(i, i′, j)) are all randomly

generated. For implementation details, please refer to our code. In order to obtain more
accurate approximations, for each set of pre-specified parameters we perform Monte Carlo
Simulation over several Markov chains.

Question 4.1. Random VI: Rather than go through all state values in each iteration, we
modify the VI method, such that in the kth iteration, we randomly select and update a subset
of states Bk in each iteration.

For this question and the next two questions, we wrote a program that generates a ran-
dom Markov chain, with a given number states and actions per state. We will call the
standard VI update method by the name “StandardVI.” We compared the convergence rate
of the RandomVI method with the StandardVI method by:

1. Generating a random Markov chain
2. Computing the fixed point y∗ up to a very small tolerance by running StandardVI until
subsequent updates only differ by the very small tolerance
3. Computing the convergence rate to y∗ of StandardVI and RandomVI (for a given batch
size), both in terms of number of iterations, and number of action costs computed (that is,
the number of times cj + γpTj y

k had to be computed).

We performed these three steps over a range of batch sizes, and we took an average of
the convergence rates over several randomly generated Markov chains via Monte Carlo Sim-
ulation. The reason we compared the number of action costs computed until convergence, as
well as the number of iterations, is that each iteration of RandomVI takes less computation
time than an iteration of StandardVI, for batch sizes smaller than the total number of states.
Furthermore, we believed the number of action costs computed was more representative of
computational time than the total time our program took to converge, because the total
time will be affected by our program implementation.

As depicted in Figures 1 and 2 we found that as the batch sizes become smaller, the num-
ber of iterations until convergence for RandomVI became much larger than for StandardVI,
but over the range of batch sizes, the number of action costs computed for both methods
remains very similar. We include plots of number of iterations until convergence and number
of action costs computed until convergence, for RandomVI and StandardVI, with random
Markov chains with 30 states and 20 actions per state. We also ran experiments over Markov
chains with a wide range of numbers of states and actions per state, and observed the same
behavior.

4

yyye
Comment on Text
Good finding

0 5 10 15 20 25 30

Batch size

0

1000

2000

3000

4000

5000

6000

7000

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

RandomVI

StandardVI

Figure 1: RandomVI vs StandardVI, 30 states and 20 actions: total number of iterations.

0 5 10 15 20 25 30

Batch Size

1.26

1.265

1.27

1.275

1.28

1.285

1.29

1.295

1.3

1.305

N
u
m

b
e
r

o
f
A

c
ti
o
n
s
 C

o
m

p
u
te

d

105

RandomVI

StandardVI

Figure 2: RandomVI vs StandardVI, 30 states and 20 actions: total number of computations.

5

Question 4.2. Empirical VI: Suppose we build an empirical distribution for each action
being selected as the winning action in the final policy: the probability of action j is the
past frequency of action j is being selected as the arg min in the previous iterations, e.g.,
the the Bayes update where we start with a uniform distribution p̄0. Redo the computational
experiments by randomly selecting Bk using the empirical distribution.

We performed the same tests on this method as we did for RandomVI, but instead of
varying the number of states that are updated in each iteration, we varied the number of
actions that were sampled for each state in each iteration. In each iteration, we would sample
actions using an updated empirical distribution ∼ multinomial (sample size, p̄). When the
action sample size was too small (less than 4), occasionally EmpiricalVI never seemed to
converge, but other time it converged relatively quickly.

As shown in Figures 3 and 4 we found that for sample sizes above a certain threshold,
the number of iterations required for EmpiricalVI and StandardVI are very similar. So,
after this threshold, the number of action costs computed grows approximately linearly with
the sample size, and the number of action costs computed is minimized for the sample size
approximately the threshold value. As opposed to RandomVI, with the optimal sample size
EmpiricalVI is significantly faster than StandardVI. We include plots of number of iterations
until convergence and number of action costs computed until convergence, for EmpiricalVI
and StandardVI, with random Markov chains with 30 states and 20 actions per state. Again,
we also ran experiments over Markov chains with different numbers of states and actions per
state, and observed the same behavior.

6

yyye
Comment on Text
Exactly true

yyye
Underline

yyye
Comment on Text
Good finding

0 5 10 15 20 25

Number of actions selected per iteration

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
u
m

b
e
r

o
f
it
e
ra

ti
o
n
s

EmpiricalVI

StandardVI

Figure 3: EmpiricalVI vs StandardVI, 30 states and 20 actions: total number of iterations.

0 5 10 15 20 25

Number of actions selected per iteration

0

1

2

3

4

5

6

7

8

9

N
u
m

b
e
r

o
f
A

c
ti
o
n
s
 C

o
m

p
u
te

d

105

EmpiricalVI

StandardVI

Figure 4: EmpiricalVI vs StandardVI, 30 states and 20 actions: total number of computa-
tions.

7

Question 5,6. Cyclic VI: In the CyclicVI method, as soon as a state value is updated, we
use it to update the rest of state values. RPCyclic VI: In the RP (Randomly Permuted)
CyclicVI method, rather than with the fixed cycle order from 1 to m, we follow a random
permutation order.

We compared the convergence rates of StandardVI, RandomVI, EmpiricalVI, CyclicVI,
and RPCyclicVI, in the same way as we did for RandomVI, over randomly generated Markov
chains of varying numbers of states and actions per state. For the RandomVI method, the
batch was fixed at 10, because the performance of this method does not appear to signifi-
cantly vary with the batch size. For the EmpiricalVI method, for each generated Markov
chain, we computed the optimal sample size through Monte Carlo Simulation (the sample
size that had the fewest action cost computations until convergence), and recorded the num-
ber of action cost computations for this optimal sample size. We tested the methods on
Markov chains with 30 states 10 to 30 actions per state, and on Markov chains with 20
actions per state and 10 to 30 states. We plotted our results in Figures 5 and 6.

First of all, we found that both CyclicVI and RPCyclicVI displayed improvements in
convergence rate. Our numerical experiment showed that both of them have convergence
rates about twice faster than those of StandardVI and RandomVI. Moreover, over the range
of parameters we tested, RPCyclicVI appeared to converge slightly faster than CyclicVI
does, but the difference was not as significant.

Overall, the method with the best performance was EmpricalVI (with the optimal sample
size chosen), followed by CyclicVI, closely followed by RPCyclicVI, and StandardVI and
RandomVI performed poorly. While EmpiricalVI had the best performance with the optimal
sample size, in practice it may be computationally difficult to determine the optimal sample
size. The performance of EmpiricalVI becomes better compared to the other methods as the
number of actions per state grows, because only a small subset of the actions are sampled.

8

10 12 14 16 18 20 22 24 26 28 30

Number of states

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

a
c
ti
o

n
s
 c

o
m

p
u

te
d

10
4

StandardVI

RandomVI

EmpiricalVI

CyclicVI

RPCyclicVI

Figure 5: Comparison of Five VI Methods: total number of iterations.

10 12 14 16 18 20 22 24 26 28 30

Number of actions

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
u
m

b
e
r

o
f
a
c
ti
o
n
s
 c

o
m

p
u
te

d

105

StandardVI

RandomVI

EmpiricalVI

CyclicVI

RPCyclicVI

Figure 6: Comparison of Five VI Methods: total number of computations.

4 Remarks

In the previous section, we have numerically shown the impressive convergence rate improve-
ments of EmpiricalVI, CyclicVI and RPCyclicVI. One possible future research direction could

9

yyye
Comment on Text

be to theoretically prove these results. Moreover, introducing a faster algorithm to find the
optimal sample size in EmpiricalVI will further enhance its convergence rate. On the other
hand, RandomVI failed to display any significant improvement even when tested with var-
ious batch sizes. Investigating theoretical reasonings behind this could another interesting
research direction.

10

yyye
Comment on Text
Nice summary, especially on analysis of EmpiricalVI for MDP problems with large number of actions per state.

