MS&E 310 Course Project Report:
Markov Decision Process

Jongho Kim Hyunsik Kim
jkim220@stanford. edu hsik@stanford.edu

Markove Decision Process (MDPs) provide a mathematical framework for modeling se-
quential decision-making in situations where outcomes are partly random and partly under
the control of a decision maker. The MDP problem with m states and total n actions can be
formulated as a standard form linear program with m equality constraints and n variables.

m;ng C;Tj+ -+ E CjTj

jeAL JEAmM

subject to Z (e1 —ypj)z; + -+ Z (em, —YPj)x; =€ (1)
jEAL JEAm
xZ; 2 0, V]

where A; represents the set of all actions available in state i, p; is the state transition
probabilities from state ¢ to all states and c; is the immediate cost when action j is taken,
and 0 < v < 1 is the discount factor. Also, e € R™ is the vector of ones, and e; is the
unit vector with 1 at the i-th position and zeros everywhere else. Variable z;, j € A; is the
state-aciton frequency or flux, or the expected present value of the number of times in which
the process visits state ¢ and takes state-action j € A;.

This LP formulation can be re-formulated as following:

1. Let Py (j) be the transition probabilities from state i to state k& when action j taken.
Also, let x(i,j) be the state-action frequency of state i and action j and ¢(i, j) be the
immediate cost when action j is taken at state ¢. Then, the objective function can be
re-formulated as following:

minimize Z Z c(i, j)x(i,)
i=1 jEA;
2. Using above notation, x; and p; has following formulation:

Dbi1 (j)
Di2 (j)

vy =w(i.j) Viefl...om}, pj=

Then, e/ z; = x(i,j) and p;z; is a vector multiplied by scalar. Then, the equality

constraints can be formulated as following;:

Z(’ij Tj+ oot Z 'ij =€

jE»Al JE-Am
JEA; k=1 jEAL

= w(i) =1+ 7> puli)ak,j) Vi
JEA; k=1 jEAL

= w(i,) =1+v> > prili)ak,j) Vi
JEA; k=1 jeAg

Reformulated MDP primal problem is:

minimize Y > " e(i, j)z(i, 5)

i=1 jeA;

subject to) w(i,) =147 > pu(i)a(k.j) Vi
JEA; k=1 jeA
X Z 07 VJ

Question 1

1. Prove that in (2) every basic feasible solution represent a policy, i.e., the basic variables
have exactly one variable from each state i.
[Answer|
First, we show that a basic feasible solution (BFS) x corresponds to a stationary policy.
Let B denote the matrix set of basic variables, then |B| = m. Suppose B does not
contain any state-action pair for a certain state z. Then, >, x(z,j) = 0. However,

Yow(zi) =147 D peli)alk,j) #0

jeEA, k=1 jeAL

Hence, B contains exactly one state-action pair for each state, and corresponds to a
stationary policy of the discounted MDPs.

Second, we show that a stationary policy 7 corresponds to a BFS. Suppose 7(i) = q;
fori=1,...,mandlet B={(i,a;) |i=1,...,m a; € A;}. Then, for (i,a;), we have

pil(ai)
. pi2(ai)

Tj = l‘(l,ai), P; = .
pim(ai)

From (1), the equality constraints can be written as the form Agxp = e where Ap =
I — vPp and Pp = pji(a;). It can be observed that the diagonal entries of Ap are
positive and the off diagonal entriees are non-positive. This implies that Ag is a full
rank matrix and Ap is a basis. Hence, xp and xy where xp = A]’Ble and x is a basic
solution.

Then, we need to show that x is feasible (in other words, xp > 0). Suppose converse
is true. Then, {Aprp = e, xp > 0} is infeasible. Applying the Farkas’ lemma, then
there exists y such that 47 A < 0 and y’e > 0. Suppose ¥, is the maximum entry in
y. Then, y’e > 1 so y; > 0. Given y" Ag < 0, then the first entry of y" Ag, (y' Ap):
also holds. (i.e., (yTAg); <0).

0> (y"Ap):
= (y"(I —vPp))1
=1y, —yyl P, P, is the first column of Pg
=yl —7)
>0 (Contradiction) @

Therefore, g, zy is feasible and therefore a stationary policy 7 corresponds to a BFS.

yyye
Sticky Note
Nice

2. Prove each basic variable value is no less than 1 and the sum of all basic variable values
is %
[Answer| From (2), the equality constraints is following:

S oa(i) =147 > pui)a(k,j) Vi
JEA; k=1 jeA

Sum up all equality constraints, then we get

k=1 jeA
=m-+nyex
Hence, e’z = % Therefore, the sum of all basic variable values is %

Let 2™ be a basic feasible solution (BFS). Then,

Z x"(i,j) =1+ ’yz Z pei(f)a"(k,5) Vi

JEA; k=1 jeAg
>1 Vi

Therefore, each variable value is no less than 1.

Question 2

Prove ||y — || < v |jy* — 7| Vk, where
yi = min{e; +p;y7} Vi
Kl _ T k :
i =min{e +p;yt Vi
[Answer]|

First, we prove the following:

mjinf(j) —mjing(j) < mjaXIf(j) —9(j)| (3)
where f(j) = ¢; +p; y" and g(j) = ¢; + P} ¥*

Let F' = argmin; f(j) = argmin;{c; +yp] y*} and G = argmin; g(j) = argmin;{c; +vp] y*}.
Then, clearly, f(F) < f(G) and g(G) < g(F'). Therefore,

F(F) = 9(G) < £(G) — 9(G)
< 1£() - 9()]
< max|(j) - 9(5)|

and similarly,

9(G) — f(F) < g(F)— f(F)
< |g(F) — f(F)|
< m;LXIg(j) - f)l = mJaXIf(J') il

Therefore,

|f(F) —9(G)| = mjinf(j) - mjing(j) < max 1£(7) —9(j)]

Then, we have following:

[=y, = max [y -y
o . T k . T
= max %%{Cj +p; Y} — %}L{:{Cj +0; ¥}
< maxmax [(c; + 905 ¥") — (¢; +p)¥*)| (By (3))
_ T — o
= maxmax [7p; (4" —)
_ OV —
= max max v;p@@ () (Wi — i)
< o (5) (Yl — s
< maxmaxy ;pn () (Wi — i)
< mﬁxggafvglpii/(J) (v —y)| (Here, Tused |z +y| < ||+ |y])

expe?t;tion
< max max y max |y} — yl*/|
7 JEA; i
= ymax |y} — y;
=y = v
Therefore, ||y**! — y* < % =y ., Vk is proved.

yyye
Sticky Note
Clean proof

From office hour: SKIP Question 3

Algorithms

From question 4 to 6, we have following questions:

(i) What can you tell the convergence of the algorithm in this question?

(iii) If there is any sample size present, how is the sample size affect the performance?
i

)
(ii) Does it make a difference with the classical VI method?
)
(iv) Use simulated computational experiments to verify your claims.

Therefore, we present and briefly explain about each algorithm and answer above questions
on Experiment section. For each algorithm, ¢ denotes Immdeidate cost, p denotes State-
transition probabilities, v denotes Discount factor and e denotes threshold for convergence.
The output y* denotes the optimal cost-to-go value for each state.

e OriginalVI algorithm
Original version of VI method is following:

Algorithm 1: Original Value Iteration (OriginalVI)

Input :c¢, p, v, ¢

Output: y*
1 y? «— Initialize()
2 k=0
3 while True do
4 fort=1,...,m do
5 |yt = minjea,{c; +pl¥F}
6 if max;{|y**! — y¥|} < ¢ then
L return y*+t!
8 | k=k+1

e RandomVI on question 4
Motivation: Rather than go through all state values in each iteration, in the kth
iteration, randomly select a subset of states B* and do

yf“ = min{¢; + ’ypfyk} Vi € B”
JEA;

In RandomVI, we only update a subset of state values at random in each iteration.

Algorithm 2: Random Value Iteration (EM-RandomVT)

(= B B VN

EN|

Input : ¢, p, v, €, a: state subset size
Output: y*

kE=0,y" +— Initialize()
while True do
BF «— sample([1,...,m], a)
for i € B¥ do
yi ' = minje 4, {c; +vp!y*}
B «— BF\ i

k41
Yi

—y¥|} < e then

k+1

if max;{

Lreturny
| k=k+1

e EM-RandomVI on question 4
Motivation: In this algorithm, we build an empirical distribution for each action being
selected as the winning action in the final policy: the probability of action j is the past
frequency of action j is being selected as the argmin in the previous iterations.

Algorithm 3: Empirical Random Value Iteration (EM-RandomVT)

=BG B U VI

~

Input :c, p, v, €, a: action subset size
Output: y*

k=0,y" +— Initialize()
while True do
fori=1,...,m do

A; = weightedSample (A;, ov,distribution = P)
k+1 :

yi = minje 4, {¢; +vp] ¥}

update P
k+1

Y +

—y¥|} < e then

k+1

if max;{

Lreturny
B k=k+1

P is empirical distribution for each action 7 based on by book-keeping previous fre-
quency of action j being selected for each state.

e CyclicVI on question 5
Motivation: In the CyclicVI method, as soon as a state value is updated, we use it to
update the rest of state values.

Algorithm 4: Cyclic Value Iteration (CyclicVI)

Input :c¢,p, v, e

Output: y*
1 k=0, y%<— Initialize()
2 while True do
3 gk =y
4 fori=1,...,m do
5 | 97 = minjeq, {c; +vp] ¥*}
6 yhtl =
7 if max;{|y**! — y¥|} < ¢ then
8 L return y*+t!
9 k=k+1

e RPCyclicVI on question 6
Motivation: In the RPCyclicVI method, rather than with the fixed cycle order from 1
to m, we follow a random permutation order, or sample without replacement to update
the state values.

Algorithm 5: Randomly Permuted Cyclic Value Iteration (RPCyclicVI)

Input :c¢,p, v, ¢
Output: y*

kE=0,y"+— Initialize()
while True do
yk — yk
B* «— Permutation([1,...,m])
for i € B* do

L gy = minje a4, {c; +7p] 7"

BF «— BF\ i

k+1

b =T SNV I

=yF
k+1
yi+

o]

y

9 if max;{

—y¥|} < ¢ then

10 L return y*+t!

11 k=k-+1

Extension version @

Here, we present two different version of VI methods that our team experimented.

e -RandomVI
In this algorithm, for each kth iteration, we randomly (uniformly) select a subset size,
a. Then, we select subset of states B*¥ and perform RandomV1I

Algorithm 6: Random Value Iteration with a-Subset Size (a-RandomVI)

Input :c¢,p, v, €
Output: y*

kE=0,y"+— Initialize()
while True do
« <— Uniform(1, m)
B «— Sample([1,...,m], «)
for i € B¥ do
L yi 't = minje, {c; + yply*
B «+— BF\ i

N 0 A W N

yi+l — yk} < ¢ then

k+1

0]

if max;{

9 Lreturny
1 | k=k+1

e o—RPCyclicVI
In this algorithm, for each kth iteration, we randomly (uniformly) select a subset size,
«. Then, we select subset of states B* and perform RPCyclicVI

Algorithm 7: RPCyclicVI with a-Subset Size (a-RPCyclicVI)

Input :c¢, p, v, ¢

Output: y*

1 k=0, y%<— Initialize()

2 while True do

s | yr=y"

4 « <— Uniform(1, m)

5 BF «— sample([l,...,m], a)
6 for i € B¥ do

7 gy = minje 4, {¢; +vp] ¥}
8 BF «— BF\ i

9 yk-l—l — S,k:
10 if max;{|y*! —y¥|} < ¢ then
11 | return y*t!
12 | k=k+1

10

yyye
Sticky Note
Innovative!

Experiments

1. MDPs in the small 2D Grid World

In this experiment, we present a small 2-dimensional (2D) grid world. The main motiva-
tion for this scenario experiment is to show that various algorithms in algorithms section
provides correct convergence output, y* and their policies. Below figure shows the state
representations:

Start

=]

End

Figure 1: MDP grid world

MDP formulation:

e States, s = (x,y) where x is x-coordinate and y is y-coordinate
e Start state, gt = (0,0)

e Actions at state s, A, = (Left,Right, Down, Up)

— Here, in some states, only certain actions are valid. For example, in Sy, valid
actions are A = (Right,Down)

e End state, se,q = (4,4)

e Transition Probaiblity
From state s to state s’ when action a € A is taken is:

1 if valid state

0 else

P(s,a,s') = {

The state is valid if next state, s’ is correct based on current state s and chosen action
a. For example, if $ = Sgq¢ and a = down, then P(s,a,s’) = 1if s = (1,0) and 0
otherwise.

11

yyye
Sticky Note
Excellent and illustrative example

e Cost, ¢; for red, white and gray boxes
If action j makes entering Red box: —100
If action j makes entering White box : —30
If action j makes entering Gray box : 100

Start

Figure 2: Cost of MDP grid world

We can interpret this scenario as obtaining a policy that makes a person to reach end
state while maximizing the cost. He/she receives 30 dollars when in white box state
and loses 100 dollars in gray boxes. If he reaches red box, the game ends and he/she
receives the money based on visited states. The optimal policy we hope to obtain is
following;:

Figure 3: Target Policy

We performed four algorithms which corresponds to question 4 to 6 (OriginalVI,RandomVI,
CyclicVI,RPCyclicVI) and obtained following results:

Algorithm Number of Iterations Execution Time (sec)

OriginalVI 14 0.015
RandomVI 24 0.075
CyclicVI 12 0.012
RPCyclicVI 9 0.009

Table 1: Result on small 2D small grid world

12

In this experiment, we omitted EM-RandomVI part because total number of actions is
four and possible actions are depend on which state the player is in. Some states contains
less than four actions. Therefore, keeping frequency of previous actions and select subset of
actions is not much. We incorporated EM-RandomVI on the next experiment.

(i)

(i)

(iii)

Convergence of each algorithms

In this experiment, we could observe that each algorithm converges very well. Each
algorithm provides y* that we initially hoped as shown in Figure 3. The result on
terminal can be found in Appendix B.

Comparison on results

OriginalVI took 0.015 seconds with 14 number of iterations. This classical method was
not worst among all algorithms. The worst result was actually provided by RandomVI.
It took the longest execution time (0.075 seconds) and also had the largest number of
iterations (k = 24). The best performance was done by RPCyclicVI which took 0.009
seconds and the fewest number of iterations (k = 9).

Difference with the classical VI method
RandomVI uses randomly select a subset of states and apply update rule as folowing:

yi "t = min{c; +py*} Vie B
JEA;

In this setting, for each kth iteration, the number of updates is less than the total
number of states (which is m) because we only select a subset of states and update on
these subset state values. Therefore, each arithmatic (multiply, addition etc) opera-
tion in one iteration of k is actually cheaper than that of other algorithms’. Therefore,
instead of comparing the number of iteration, we also used execution time of each
algorithm. In fact, RandomVI showed the longest execution time in table 1. This shows
that randomly selecting states does not improve much in terms of convergence.

One possible reason why RandomVI perform worse than other algorithms is that in
this small 2D grid world, state transition probabilities are deterministic. Therefore,
applying sampling method on states and update on these states might not be efficient
than updating state value for all states.

CyclicVI uses the updated state value to update the rest of state values. Although this
algorithm does not provide significant improvement on both the number of iterations
and execution time, it shows some improvements in Table 1.

Interestingly, RPCyc1icVI showed some promising results. This algorithm permutes
the set of states, B* and same approach as CyclicVI, it uses the updated state value
to update the rest of state values. This algorithm not only usually has the fewest
number of iterations, but also provides shortest execution time as shown in Table 1.

13

2. General MDPs

We experimented on sample size on RandomVI and various values of total number of states,
total number of actions, discount factors on algorithms in Algorithms section.

i) Sample size effect on RandomVI

o Sample size of states and its effect on the performance
Figure 4 shows the graph of execution time versus different sample size of states.

tion Time (second)

Figure 4: Experiment on different subset size, «

As the sample size increases, the execution time of RandomVI increases (= lin-
early). However, when we decrease state subset size too small, RandomVI does
not provide well converged output, y*. Even though it does not show good per-
formance on MDP with deterministic transition probabilities, RandomVI shows
better performance on general MDP cases. From this, we can infer that Ran-
domVTI works well for more stochastic mdp environment.

e Sample size of actions and its effect on the performance
Figure 5 shows the graph of execution time versus different sample size of actions.
Here, we build an empirical distribution for each action being selected as the
winning action in the final policy and use it for sampling of actions. As the sample

ution Time (second)

\
Y

Figure 5: Experiment on different subset size,

14

ii)

size increases, the execution time of EM-RandomVI increases (= linearly). When
we choose action subset size too large, the execution time becomes much larger
than that of RandomVI. However, when we choose action subset size appropriately
(e.g., 5), we can achieve the reduced execution time and same convergence output.

For experiments on total number of states, total number of acitons and discount fac-
tors, we omitted EM-RandomVI part because if the total number of actions are not small
enough, EM-RandomVI produces worst execution time among all algorithms. The reason
is that keep tracking the frequency of previous actions, creating empirical distribution
based on frequencies and then selecting a subset of actions from the distribution sig-
nificantly contributes on execution time.

Various total number of states

In this experiment, we use TotalNumberOfStates € [10,19] and for each choice of
TotalNumberOfStates, we run four algorithms 30 times and obtain the execution times
for each run. (note that TotalNumberOfStates € Z (integer)) After that, we took the
median value. We used 'median’ instead of 'mean’ because since two algorithms uses
randomness (stochastic approach), some outliers are present in our results and taking
‘median’ is robust to these outliers.

— OriginalVl
RandomVI (a: #states-2)

— CyclicVl

= RPCyclicVl

0.30 1

Execution Time (second)

0.10 4

0.05

T T T T T

10 12 14 16 18
Number of States

Figure 6: Execution Time vs. the Total Number of States

Figure 6 shows the result of experimenting on different number of states on four al-
gorithms. When number of states are 10, classic VI (OriginalVI) shows the longest
execution time (it took about 0.18 seconds.) and unlike previous experiment on small
2D grid world, RandomVI showed better performance than that of classic VI. Both
CyclicVI and RPCyclicVI provided the best performances which results in the short-
est execution time (both took about 0.05 seconds.).

15

Here, we can also observe that as the total number of states increases, the execu-
tion times for each algorithms also increases. However, even though execution time
increases, both CyclicVI and RPCyclicVI shows best performances in terms of execu-
tion time and RandomVT still shows better performance than OriginalVI. In addition,
we can observe that in few cases, CyclicVI performs better than RPCyclicVI. In gen-
eral, we can rank the algorithms based on the performance as following;:

RPCyclicVI > CyclicVI > RandomVI > OriginalVI

16

iii) Various total number of actions
In this experiment, we use TotalNumberOfActions € [50,69] and for each choice of
TotalNumberOfActions, we run four algorithms 30 times and obtain the execution
times for each run. (note that TotalNumberOfActions € Z (integer)) After that,
we took the median value. We used 'median’ instead of 'mean’ because since two
algorithms uses randomness (stochastic approach), some outliers are present in our
results and taking 'median’ is robust to these outliers.

0.18 4 —— OriginalVl

RandomVI (a: #states-2)
— CyclicVl
0167 _ mpcyclicvl

Execution Time (second)

0.04 | W‘%

T T T T T T T T
50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5
Number of Actions

Figure 7: Execution Time vs. the Total Number of Actions

Figure 7 shows the result of experimenting on different number of actions on four al-
gorithms. When number of states are 50, classic VI (OriginalVI) shows the longest
execution time (it took about 0.18 seconds.) and unlike previous experiment on small
2D grid world, RandomVI showed better performance than OriginalVI (it took about
0.15 seconds.). Both CyclicVI and RPCyclicVI provided the best performances which
results in the shortest execution time (both took about 0.04 seconds.).

In this figure, we can also observe that the total number of actions does not affect
the execution time much on each algorithms. For example, when the total number of
actions is 67, still OriginalVI took about 0.18 seconds and the result is still the worst
performance among all.

Note that even though the total number of actions increases, both CyclicVI and
RPCyclicVI show best performances in terms of execution time and RandomVI gener-
ally provides better performance than OriginalVI. In addition, we can notice that in
few cases, CyclicVI performs better than RPCyclicVI. In general, we can rank the
algorithms based on the performance as following:

RPCyclicVI ~ CyclicVI > RandomVI > OriginalVI

17

iv) Various discount factors
In this experiment, we use v € [0.1,0.9] and for each choice of v, we run four algo-
rithms 30 times and obtain the execution times for each run. After that, we took the
median value. We used 'median’ instead of 'mean’ because since two algorithms uses
randomness (stochastic approach), some outliers are present in our results and taking
‘median’ is robust to these outliers.

0.175
= OriginalVl

RandomVI (a: #states-2)
e CyClicVI
= RPCyclicVI

0.150 1

0.125 4

(second)

=]
=
o
o

Execution Time
e
[=]
~
w

0.050

0.0251

7

T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of Gamma

0.000

Figure 8: Execution Time vs. y

Figure 8 shows the result of experimenting on different discount factor values () on
four algorithms. When v = 0.1, both CyclicVI and RPCyclicVI shows best per-
formances while the classic VI method and RandomVI shows the worst performance
(However, note that the difference is very small). When ~ = 0.6, we can notice that
RPCyclicVI shows the best performance and the classic VI method shows the worst
performance.

It is interesting to note that as v increases, the execution time for all of four algorithms
increases exponentially. However, even though execution time increases for all of four
algorithms, the best performance is mostly achieved by RPCyclicVI. When ~ is more
than about 0.85, CyclicVI achieved slightly better performance than RPCyclicVI.

18

3. General MDPs with Two Extended Algorithms

Here, we show the performances of our two extended algorithm in comparison to other four
algorithms in Experiment section 2.

i) Various total number of states

Figure 9 shows the experiment on all six algorithms about varying total number of
states.

— OriginalVl
RandomVI (a: #states-2)
— CyclicVl
= RPCyclicVI
= a-RandomVi
—— a-RPCyclicVl

0.30 1

0.25 4

0.15 4

0.10 4

0.05

T T T T T

10 12 14 16 18
Number of States

Execution Time (second)

Figure 9: Execution Time vs. the Total Number of States

In this figure, we can observe that increasing total number of states also increases the
execution time. We can also notice that a-RandomVI does not achieve good perfor-

mances as CyclicVI or RPCyclicVI but clearly shows much improved performances
than RandomVT or the classic VI method.

In addition, a~-RPCyclicVI showed similar results with RPCyclicVI. The graph of
a-RPCyclicVI looks almost same as RPCyclicVI.

19

ii) Various total number of actions
In this figure, we can observe that increasing total number of actions does not have

—— OriginalVl

0.18 1 RandomVI (a: #states-2)
— CyclicVl

= RPCyclicvl

7 = a-Randomvi

= q-RPCyclicVl

£

g

S 0104 W
2

=

2

Q

>

w

0.04 4 WW

T T T T T T T T
50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5
Number of Actions

Figure 10: Execution Time vs. the Total Number of Actions

much impact on the execution time. Here, We can also notice that c-RandomVI does
not achieve good performances as CyclicVI or RPCyclicVI but clearly shows much

improved performances than RandomVTI or the classic VI method as in Experiment 3
part i.

a~RPCyclicVI showed similar results with RPCyclicVI. The graph of a-RPCyclicVI
looks almost same as RPCyclicVI.

20

iii) Various discount factors
Figure 11 shows the result of experimenting on different discount factor values ()

0175 9~ e OriginalVi
RandomVI (a: #states-2)
— CyclicV]
0.150 1 — RpCyclicvi
—— a-RandomVI|

—— a-RPCyclicvi
0.125 4

0.100 4

0.075 ~

Execution Time (second)

0.050 4

0.025

=

T T T T T T T T T
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Number of Gamma

0.000

Figure 11: Execution Time vs. v

on six algorithms. Here, we can observe that increasing discount factor exponentially
increases the execution time. Here, We can also notice that a~RandomVI does not
achieve good performances as CyclicVI or RPCyclicVI but clearly shows much im-
proved performances than RandomVI or the classic VI method as in Experiment 3
part i and ii. In addition, a-RPCyclicVI showed similar results with RPCyclicVI. The
graph of a«-RPCyclicVI looks almost same as RPCyclicVI.

Here, we can conclude that a-RandomVI generally performs much better than RandomVI
or OriginalVI. Also, using randomized subset size as in a-RPCyclicVI does not pro-
vide significant improvements than RPCyclicVI or CyclicVI

=l

21

yyye
Sticky Note
Good summary!

Appendix A

We include our Python code in this section.

Code for small 2D Grid World MDPs

Code for mdp.py

MXE310 Fall 2017

Hyun Sik Kim (hsik@stanford.edu)
Jongho Kim (jkim22@stanford.edu)
Random VI implementation

import numpy as np

import random

import math

#import statistics

NUMROWS=5
NUM_COLS=5

def getNumberOfNeighbors(i, j, numCols=5, numRows=5):

def

def

numberOfNeighbors = 4

actions = {"left”:1, 7right”:1, 7down”:1, "up”:1}

if i —1<0:
numberOfNeighbors —= 1
actions ["up”] = 0

if i + 1 >= numRows:
numberOfNeighbors —= 1
actions ["down”] = 0

if j — 1< 0:
numberOfNeighbors —= 1
actions[”left”] = 0

if j + 1 >= numCols:
numberOfNeighbors —= 1
actions ["right”] = 0

return numberOfNeighbors, actions

updateTrapPoints (C, numCols, numRows) :
if numCols = 5 and numRows = 5:
trapPoints = [(0,1), (1,1), (2,1),
for trapPoint in trapPoints:
C[trapPoint] = 100

isInsideGrid (i, j, numRows, numCols):
if 1 < 0:
return False
if j < 0:
return False
if j >= numCols:
return False
if i >= numRows:

22

(4,1),

(0,3),

(2,3),

(3,3),

(4,3)]

return False
return True

class MDP:
We defined a 5 by 5 rectangular grid MDP for minimum cost path searching
def __init__(self, numCols=5, numRows=5, gamma=0.8):

cost —1 for normal points
cost —10 for trap points

self C= {(i, j): =30 for i in range(numRows) for j in range(numCols)}
updateTrapPoints (self.C, numCols, numRows)
self.p = {(i, j): [] for i in range(numRows) for j in range(numCols)}

possible actions on each state
self.stateActions = {}
for i, j in self.p:
numNeighbors, actions = getNumberOfNeighbors(i, j, numCols=5,
numRows=5)
self .stateActions [(i, j)] = [action for action in actions if
actions [action] != 0]

for i, j in self.p:
self .p[(i, j)] = {action: {(row, col): 0 for row in range(numRows)
for col in range(numCols)} for action in self.stateActions[(i

31}

for action in self.stateActions|[(i,])]:

if action = "up”:

self .p[(i,j)][action][(i-1,j)] =1
if action = "down”:

self .p[(i,j)][action][(i+1,j)] =1
if action = 7right”:

self .p[(i,j)][action][(i,j+1)] =1
if action = "left”:

self.p[(i,j)][action][(i,j-1)] = 1

self .gamma = gamma

self .numCols = numCols
self .numRows = numRows

End state initialization

self .C[(numRows—1, numCols—1)] = —100
for action in self.stateActions [(numRows—1, numCols—1)]:
self .p[(numRows—1, numCols—1)][action] = {state:0 for state in
self.states ()}
self .p[(numRows—1, numCols—1)][action] [(numRows—1, numCols—1)] = 1

def states(self):
states = [(i,j) for i in range(self.numRows) for j in range(self.

numCols) |

return states

def IsEnd(self, state):
if state = (self.numRows—1, self.numCols—1):
return True

23

def

def

def

return False

startState (self):

(0,0) upper left coner is the starting point

return (0, 0)

actions (self , state):
return self.p[state].keys()

succAndProbReward (self , state, action):
if state = (self.numRows—1, self.numCols—1):
return []

next_states = |[]
i, j = state
actions = self.actions ((i,j))
for action in actions:
if action = "up”:

if isInsideGrid (i—1, j, self.numRows,
next_states.append ((i—1, j), self
Grid [i ~1]j])
if action = "down”:
if isInsideGrid(i+1, j, self.numRows,
next_states.append ((i+1, j), self
Grid [1+1][j])
if action = "left”:
if isInsideGrid (i, j—1, self.numRows,
next_states.append ((i, j—1), self
Grid [1+1][j 1))
if action = "right”:
if isInsideGrid (i, j+1, self.numRows,
next_states.append ((i, j+1), self
Grid [i][j+1])

return next_states

24

self .numCols) :

.pli,j][action],

self .numCols) :

.pli,j][action],

self .numCols) :

.pli,j][action],

self .numCols) :

.p[i,j][action],

self.

self .

self.

self.

Code for value.py

import random

import math

import copy

import time

import mdp # MDP environment we’ve developed

NUMROWS=5
NUM_COLS=5
EPSILON=1e—5
NUM.STATES=25

Bench Mark: Value Iteration
def vanillaVI(mdp):
start_time = time.time/()
t =20
y = {state: 0 for state in mdp.states()}
policy = {i:”None” for i in range (NUMSTATES) }
while True:
updated_y = copy.deepcopy (y)

t +=1
for state in mdp.states():
candidates = []

for action in mdp.p[state]:
candidate = 0
for next_state in mdp.p[state][action]:

candidate += mdp.gamma * mdp.p[state][action][next_state]

* y[next_state]

row, col = state
if action = "up”:
next_state = (row—1, col)
elif action == "down”:
next_state = (row+1, col)
elif action = 7left”:
next_state = (row, col—-1)
elif action == "right”:
next_state = (row, col+1)

if it reaches the end state, then it doesn’t have any next

state!
if mdp.IsEnd(state):

candidates.append ((0 + mdp.C[state], action))
else:

candidates.append ((candidate 4+ mdp.C[next_state]|, action))

updated_y [state] = min(candidates) [0]
policy [state] = min(candidates) [1]

checker = max(abs(y[state]—updated_y[state]) for state in mdp.states ()

)

25

if checker <= EPSILON:
execution_time = time.time () — start_time
return updated_.y, t, policy, execution_time

y = updated_y

Question 4: Random Value Iteration
def randomVI(mdp, subsetSize):
start_time = time.time ()
t =0
y = {state: 0 for state in mdp.states()}
policy = {i:”None” for i in range (NUMSTATES) }
while True:
updated_y = copy.deepcopy (y)
t =1
B = random.sample (mdp.states (), subsetSize)
for state in B:
candidates = []
for action in mdp.p[state]:
candidate = 0
for next_state in mdp.p[state][action]:
candidate += mdp.gamma % mdp.p[state][action]|[next_state]
* y[next_state]

row, col = state
if action = "up”:
next_state = (row—1, col)
elif action == "down”:
next_state = (row+1, col)
elif action = 7 left”:
next_state = (row, col—1)
elif action = "right”:
next_state = (row, col+1)

if it reaches the end state, then it doesn’t have any next
state!

if mdp.IsEnd(state):

candidates.append ((0 + mdp.C[next_state]|, action))
else:

candidates.append ((candidate + mdp.C[next_state], action))

updated_y [state] = min(candidates) [0]
policy [state] = min(candidates) [1]
checker = max(abs(y[state]—updated_y[state]) for state in B)

if checker <= EPSILON:
execution_time = time.time() — start_time
return updated_y, t, policy, execution_time

y = updated._y

26

Question 5 Cyclic Value Iteration
def cyclicVI(mdp):
start_time = time.time ()
t =20
y = {state: 0 for state in mdp.states()}
policy = {i:”None” for i in range (NUMSTATES) }
while True:
updated_y = copy.deepcopy (y)

t 4= 1
for state in mdp.states():
candidates = []

for action in mdp.p[state]:
candidate = 0
for next_state in mdp.p[state][action]:
candidate += mdp.gamma * mdp.p[state][action][next_state]
* y[next_state]

row, col = state
if action = "up”
next_state = (row—1, col)
elif action = "down”:
next_state = (row+1, col)
elif action = "left”:
next_state = (row, col—1)
elif action = "right”:
next_state = (row, col+1)

if it reaches the end state, then it doesn’t have any next
state!

if mdp.IsEnd(state):
candidates.append ((0 + mdp.C[state], action))

else:

candidates.append ((candidate 4+ mdp.C[next_state], action))

y[state] = min(candidates) [0]
policy [state] = min(candidates) [1]
checker = max(abs(updated_y[state]—y[state]) for state in mdp.states ()

)

if checker <= EPSILON:
execution_time = time.time () — start_time
return y, t, policy, execution_time

Question 6: Random Permutation Cyclic Value Iteration
def RPcyclicVI(mdp):

start_time = time.time/()

t =20

y = {state: 0 for state in mdp.states()}

27

states mdp. states ()
policy = {i:”None” for i in range (NUMSTATES)}
while True:
updated_y = copy.deepcopy (y)
t =1
random. shuffle (states)
for state in states:
candidates = []
for action in mdp.p[state]:
candidate = 0
for next_state in mdp.p[state][action]:

candidate += mdp.gamma * mdp.p[state][action][next_state]
* y[next_state]

row, col = state
if action = "up”:
next_state (row—1, col)
elif action == "down”:
next_state = (row+1, col)
elif action = "left”:
next_state = (row, col—1)
elif action = "right”:
next_state = (row, col+1)

if it reaches the end state, then it doesn’t have any next
state !

if mdp.IsEnd(state):
candidates.append ((0 + mdp.C[state], action))

else:

candidates.append ((candidate + mdp.C[next_state], action))

y[state] = min(candidates) [0]
policy [state] = min(candidates) [1]
checker = max(abs(updated_y[state]—y[state]) for state in mdp.states()

)

if checker <= EPSILON:
execution_time = time.time () — start_time
return y, t, policy, execution_time

Print function for values and policy
def printer(grid, numCols=5, numRows=5):
for row in range(numRows):
line = []
for col in range(numCols):
line .append (7 ("+str (row)+" ,”"+str (col)+")"+ ")
for policy
if (row, col) not in grid:
line .append (”None”)
else:

28

for policy

if isinstance (grid [(row, col)
line .append(grid [(row, co

for value

else:

line .append (” {0:.2f}” . format (grid [(row, col)]))

str):

I
1)
print line

if __name__=—"__main__":

mdp = mdp.MDP()

Value Iteration

result_y , numlter, policy , execution_time = vanillaVI (mdp)
print 7 Vanilla_.VI_Number_.of_.iterations:”, numlter

print ”Execution_Time:_{0:.3f}”.format (execution_time)
printer (result_y , mdp.numCols, mdp.numRows)

printer (policy)

print 7

Question 4
for diff in range (24, 25): # when the subset size is
algorithm does not work well!
Qustion 4
subsetSize = NUMSTATES — diff
result_y , numlter, policy, execution_time = randomVI(mdp,
print ”"Random_VI_Number_of_iterations:”
subsetSize

print ”Execution_Time:_{0:.3f}”.format (execution_time)
printer (result_y , mdp.numCols, mdp.numRows)

printer (policy)

print 7

too small, the

subsetSize)
, numlter, ”SubsetSize:”,

Qustion 5

result_y , numlter, policy , execution_time = cyclicVI (mdp)
print 7 Cyclic_.VI_Number_of_iterations:”, numlter

print ”Execution_Time:_{0:.3f}”.format (execution_time)
printer (result_y , mdp.numCols, mdp.numRows)

printer (policy)

print 7

Qustion 6

result_y , numlter, policy , execution_time = RPcyclicVI(mdp)

print ”"Random.Permutation_Cyclic_.VI_Number_of_iterations:”, numlter
print "Execution_Time:_.{0:.3{}”.format (execution_time)

printer (result_y , mdp.numCols, mdp.numRows)

printer (policy)

print 7

Qustion 4

29

#for i in range(24, 20, —1):

subsetSize = 24

result_y , numlter, policy = randomVI(mdp, subsetSize)

print "Random VI Number of iterations:”, numlter, ”Size of each subset:”,
subsetSize

#printer (result_y , mdp.numCols, mdp.numRows)

printer (policy)

29

30

Code for General MDPs
Code for kimMDP. py

Synthetic Experiment on MDP Value Iteration algorithms
import random

import numpy as np

import copy

import time

import statistics

import matplotlib.pyplot as plt

Sparse probability: three vi algorithms are similar
Large action space: reduce variation in num of iterations
class MDP:
def __init__(self, NUMSTATES = 10, NUMACTIONS = 50, \
lb = 30, ub = 50, GAMMA = 0.9, EPSILON = le—7):
Generates a random int vector with size = NUMSTATES
##[JAL, |A2], ..., |Am]|]
self .NUM_STATES=NUM_STATES
self .NUM_ACTIONS=NUM_ACTIONS
self.states = range (NUMSTATES)
self . actions = range (NUM_ACTIONS)
self.1b = 1b
self .up = ub
self .GAMMA = GAMMA
self .EPSILON = EPSILON

self.stateActionSize = np.random.randint (lb, ub + 1, size=NUMSTATES)
self.stateActions = {}
for i in range (NUMSTATES) :
self.stateActions[i] = sorted(random.sample(self.actions, self.
stateActionSize[i]))

self.stateActionCounts = {}
for i in range (NUMSTATES):
self .stateActionCounts[i] = {}
for action in self.stateActions|[i]:
self .stateActionCounts[i][action] = 0

Generate probability matrix
self .pmat = {}
for i,actionSize in enumerate(self.stateActionSize):
for state i, pmatrix should have column size of actionSize, |Ai]
self .pmat[i] = {}
for action in self.stateActions[i]:
Generate probability for m states
p = np.random. choice ([0.1, 0.1, 0.1, 0.1, 200.0], NUMSTATES)
p /= p.sum()
self .pmat[i][action] = p

self .c = {}

31

for i in range (NUMSTATES) :
self.c[i] = {}
for action in self.stateActions[i]:
self.c[i][action] = np.random.randint(—1, 1 + 1, size=1)

Value Iteration
def VanillaVI (mdp) :
start_time = time.time ()
t =20
initialize y
y = np.zeros (mdp. NUM STATES)
policy = {i:”None” for i in range(mdp.NUMSTATES) }
states = range (mdp.NUMSTATES)
while True:
updated_y = copy.deepcopy (y)
t =1
for i in states:
candidates = []
for action in mdp.stateActions[i]:
candidate = mdp.c[i][action] 4+ mdp.GAMMA % (np.dot(mdp.pmat|i
Ilaction], y))
candidates.append ((candidate , action))
updated_y [i] = min(candidates) [0]
policy [i] = min(candidates) [1]

checker = max(abs(y[i]—updated_y[i]) for i in range (mdp.NUMSTATES))

if checker <= mdp.EPSILON:
execution_time = time.time() — start_time
return updated_.y, policy, t, execution_time
y = updated_y

Random Value Iteration
def RandomVI(mdp, subsetSize):
start_time = time.time ()
t =20
y = np.zeros (mdp.NUM.STATES)
policy = {i:”None” for i in range(mdp.NUMSTATES) }
states = range (mdp.NUMSTATES)
while True:

subset = random.sample(states , subsetSize)
updated_y = copy.deepcopy (y)
t =1
for i in subset:
candidates = []

for action in mdp.stateActions[i]:
candidate = mdp.c[i][action] 4+ mdp.GAMMA % (np.dot(mdp.pmat|i
J[action], y))
candidates.append ((candidate , action))
updated_y[i] = min(candidates) [0]
policy [i] = min(candidates) [1]

32

checker = max(abs(y[s]—updated_y[s]) for s in subset)

if checker <= mdp.EPSILON:
execution_time = time.time() — start_time
return updated_y, policy, t, execution_time

y = updated._y

Random Value Iteration Empirical distribution
Sampling Actions!!!
def Empirical_ RandomVI(mdp, K):
start_time = time.time ()
t =20
y = np.zeros (mdp.NUM.STATES)
policy = {i:”None” for i in range(mdp.NUMSTATES) }

states = range (mdp.NUM_STATES)
weights = {}

stateActionCounts = {}
for i in range (mdp.NUMSTATES) :

weights[i] = {}
stateActionCounts|[i] = {}
for action in mdp.stateActions[i]:
weights[i][action] = 1.0/mdp.stateActionSize[i]
stateActionCounts [i][action] =1
stateTotalActionCount = {i:mdp.stateActionSize[i] for i in range(mdp.
NUMLSTATES) }

while True:
updated_y = copy.deepcopy (y)

t =1
for i in states:
weight = [weights[i][action] for action in mdp.stateActions][i]]
actions = np.random. choice (mdp. stateActions[i], size=K, replace=
False, p=weight)
candidates = []

for action in actions:
candidate = mdp.c[i][action] 4+ mdp.GAMMA % (np.dot (mdp.pmat|i
[action], y))
candidates.append ((candidate , action))
updated_y[i] = min(candidates) [0]
policy[i] = min(candidates) [1]
stateActionCounts [i][policy[i]] +=1
stateTotalActionCount [i] += 1

33

checker = max(abs(y[s]—updated_y[s]) for s in states)

if checker <= mdp.EPSILON:
execution_time = time.time() — start_time
return updated_y, policy, t, execution_time

for i in range (mdp.NUMSTATES) :
for action in mdp.stateActions[i]:
weights[i][action] = float (stateActionCounts[i][action]) /
stateTotalActionCount [1]

y = updated_y

Cyclic Value Iteration
def CyclicVI (mdp):
start_time = time.time ()
t =0
y = np.zeros (mdp. NUM STATES)
policy = {i:”None” for i in range(mdp.NUMSTATES) }
states = range (mdp.NUM_STATES)
while True:
updated_y = copy.deepcopy (y)
t =1
for i in states:
candidates = []
for action in mdp.stateActions[i]:
candidate = mdp.c[i][action] 4+ mdp.GAMMA % (np.dot (mdp.pmat][i
|[action], y))
candidates.append ((candidate , action))
y[i] = min(candidates) [0]
policy [i] = min(candidates) [1]
checker = max(abs(y[i]—updated_y[i]) for i in states)
if checker <= mdp.EPSILON:
execution_time = time.time() — start_time
return y, policy, t, execution_time

Random Permutation Value Iteration
def RPCyclicVI(mdp) :
start_time = time.time ()
t =20
y = np.zeros (mdp.NUM.STATES)
policy = {i:”None” for i in range(mdp.NUMSTATES) }
states = range (mdp.NUM_STATES)
while True:
updated_y = copy.deepcopy (y)
t =1

random. shuffle (states)
for i in states:
candidates = []
for action in mdp.stateActions[i]:

34

candidate = mdp.c[i][action] + mdp.GAMMA % (np.dot (mdp.pmat|i
|[action], y))
candidates.append ((candidate , action))
y[i] = min(candidates) [0]
policy [i] = min(candidates) [1]
checker = max(abs(y[i]—updated_y[i]) for i1 in states)

if checker <= mdp.EPSILON:
execution_time = time.time() — start_time
return y, policy, t, execution_time

Random Value Iteration Version 2
def RandomVI_Ver2 (mdp) :
start_time = time.time ()
t =20
y = np.zeros (mdp.NUM.STATES)
policy = {i:”None” for i in range(mdp.NUMSTATES) }
states = range (mdp.NUMSTATES)
while True:
alpha = random.randint (1, mdp.NUMSTATES)

subset = random.sample(states , alpha)
updated_y = copy.deepcopy (y)
t +=1
for i in subset:
candidates = []

for action in mdp.stateActions[i]:
candidate = mdp.c[i][action] 4+ mdp.GAMMA % (np.dot (mdp.pmat][i
[action], y))
candidates.append ((candidate , action))
updated_y[i] = min(candidates) [0]
policy [i] = min(candidates) [1]

checker = max(abs(y[i]—updated_y[i]) for i in states)
if checker <= mdp.EPSILON:

execution_time = time.time() — start_time

return updated_y, policy, t, execution_time

y = updated_y

Cyclic Value Iteration Version 2 (Basically with random permutation)
def CyclicVI_Ver2 (mdp):
start_time = time.time ()
t =0
y = np.zeros (mdp. NUM STATES)
policy = {i:”None” for i in range(mdp.NUMSTATES) }
states = range (mdp.NUM_STATES)
while True:
updated_y = copy.deepcopy (y)
t =1
alpha = random.randint (1, mdp.NUMSTATES)

35

def

def

def

def

subset random . sample(states , alpha)
for i in subset:
candidates = []
for action in mdp.stateActions[i]:
candidate = mdp.c[i][action] + mdp.GAMMA % (np.dot(mdp.pmat]i
|[action], y))
candidates.append ((candidate, action))
y[i] = min(candidates) [0]
policy [i] = min(candidates) [1]
checker = max(abs(y[i]—updated_y[i]) for i in subset)
if checker <= mdp.EPSILON:
execution_time = time.time () — start_time
return y, policy, t, execution_time

policyPrinter (policy):
for i in range (NUMSTATES) :

)

print ”State”, i, 7:”, ”"policy:”, policy[i]

yPrinter (y):
for i in range (NUMSTATES) :

) ”

print ”State”, i, 7:”7, "y_value:”, y[i]

freqPrinter (stateActionCounts):
for i in range (NUMSTATES) :
line = []
for action in stateActions[i]:
line .append ((action, stateActionCounts[i][action]))

print 7 State”, i, 7:”7, 7Action,_.Count:”, line
plot (mode, x, VI, RVI, CVI, RPCVI, RVI2, KVI, diff):

plt.figure(figsize=(10,6), dpi=100)
ax=plt .subplot (111)

plt.plot(x, VI, color="#1874CD”, linewidth=2.0, linestyle="-", label=’
OriginalVI")

plt.plot (x, RVI, color="#FFA343” | linewidth=2.0, linestyle="-", label=’
RandomVI_(’ + r”α” + 7: _#states—" + str(diff) + 7)”)

plt.plot(x, CVI, color="#I1CAC78”, linewidth=2.0, linestyle="-—", label=’
CyclicVI")

plt.plot (x, RPCVI, color="#FD3F17”, linewidth=2.0, linestyle="-", label=’
RPCyclicVI’)

plt.plot (x, RVI2, color="#5500FF” , linewidth=2.0, linestyle="-", label=r"$
\alpha$”4+ ’'—RandomVI’)

plt.plot(x, KVI, color="#8B4513” ; linewidth=2.0, linestyle="-—", label=r”"$\
alpha$”’+ —RPCyclicVI")

plt.grid ()

mode = {” States”, " Actions”, ”"Gamma”}

36

xlabel = "Number_of.” + mode
file_name = ”7./” 4+ mode + ” _execution_time_extension.png”

plt . xlabel(xlabel)

plt.ylabel (" Execution._Time. (second)”)
plt.legend (loc="upper_left ")
plt.savefig(file_name)

plt .show ()

def plotd(x, EVI, RVI, diff):
plt . figure(figsize=(10,6), dpi=100)
ax=plt .subplot (111)

plt.plot(x, EVI, color="#1874CD”, linewidth=2.0, linestyle="-—", label=’
EmpiricalVI’)

plt.plot (x, RVI, color="#FFA343” | linewidth=2.0, linestyle="-", label=’
RandomVI_(’ + r”α” + 7:_#states—" + str(diff) + 7)”)

plt.grid ()

mode = {”States”, 7 Actions”, ”Gamma”}

xlabel = "Number_of_Sampled_Actions_per_iteration”

file_name = 7./ Question4d_empirical_execution_time.png”

plt . xlabel (xlabel)

plt.ylabel (” Execution._Time. (second)”)
plt.legend (loc="upper_left)
plt.savefig(file_name)

plt .show ()

def plot4_subset(x, RVI, subsetSize):
plt . figure(figsize=(10,6), dpi=100)
ax=plt .subplot (111)

plt.plot(x, RVI, color="#I1CAC78”, linewidth=3.0, linestyle="—", label=’
RandomVI_.(’ + r”α” + 7)”)

plt.grid ()

xlabel = "Number_of_Sampled._States_per_iteration”

file.name = 7./ Question4 _different_subset_size.png”

plt.xlabel (xlabel)

plt.ylabel (" Execution._Time.(second)”)

plt.legend (loc="upper_left ’)
plt.savefig(file_name)

plt .show ()
Main
if __name__=—"__main__":

37

H#HHE Setting

m states

NUMSTATES = 10
NUM_ACTIONS = 50
states = range (NUM.STATES)
actions = range (NUM_ACTIONS)
lb = 30 # lower bound
ub = 50 # upper bound
GAMMA = 0.9

EPSILON = le—7
NUM_TRIALS=30

K=5

NUM_ITER 4 = 30

data for plot

x =[]

VI=[]

RVI=]]

CVI=[]

RPCVI=]]

RVI2=]]

KVI=]]

diff = 2

Choose mode depending on the plot we’d like to plot
mode = "7 States”
for numStates in range(10, 20):

NUM.STATES = numStates

x.append (numStates)

#mode = 7 Actions”

#for numActions in range (50, 70, 1):
NUM_ACTIONS = numActions

x.append (numActions)

#mode = ”Gamma’

#NUMGAMMA = 10

#Gamma = [i / float (NUMGAMMA) for i in range(l, NUMGAMMA + 1)]
#for gamma in Gammal[: —1]:

GAMMA = gamma

x.append (gamma)

mdp = MDP(NUM_STATES=NUM STATES, NUM_ACTIONS=NUM_ACTIONS, \
Ib=1b, ub=ub, GAMMA=GAMMA, EPSILON=EPSILON)

Bench Mark

updated_y , policy, t, execution_time = VanillaVI(mdp)
VI.append(execution_time)

#print ”Value Iteration:”

#print 7 Iterations:”, t

#print ”Execution Time: {0:.3f}”.format(execution_time)

38

#yPrinter (updated.y)
#print 7
#policyPrinter (policy)

RVI_memory = []

RVI2_memory = []

KVI_.memory = []

for _ in range (NUM_TRIALS) :
subsetSize = NUMSTATES — diff
updated_y , policy, t, execution_time = RandomVI(mdp, subsetSize)
RVI_memory . append (execution_time)

updated_y , policy, t, execution_-time = RandomVI_Ver2 (mdp)
RVI2_memory . append (execution_time)

updated_y , policy, t, execution_time = CyclicVI_Ver2 (mdp)
KVI_memory . append (execution_time)

RVI.append (statistics .median(RVI_memory))
RVI2.append(statistics.median (RVI2_memory))
KVI.append(statistics .median (KVI_memory))

updated_y , policy, t, execution_time = CyclicVI (mdp)
CVI.append (execution_time)

updated_y , policy, t, execution_time = RPCyclicVI(mdp)
RPCVI. append (execution_time)

print mode, ”7:”, x[—1], ”Completed”

plot (mode, x, VI, RVI, CVI, RPCVI, RVI2, KVI, diff)

Question 4: Different subset size of states
x =[]
NUM_STATES=20
for i in range (NUM_TRIALS) :
mdp = MDP(NUM.STATES=NUM STATES, NUM_ACTIONS=NUM_ACTIONS, \
Ib=1b, ub=ub, GAMMA=GAMMA, EPSILON=EPSILON)
RVI_memory = {i:[] for i1 in range(10, NUMSTATES)}
for subsetSize in range(10, NUMSTATES):
if i = 0:
x.append (subsetSize)
updated_y, policy, t, execution_time = RandomVI(mdp, subsetSize)
RVI_memory [subsetSize].append (execution_time)
print i
RVI = []
for subsetSize in range (10, NUMSTATES) :
RVI.append(statistics.median (RVI_memory|[subsetSize]))

39

plotd_subset (x, RVI, diff)

Question 4 Advanced:
mdp = MDP(NUM_STATES=NUM STATES, NUM_ACTIONS=NUM_ACTIONS, \
lb=1lb, ub=ub, GAMMA=GAMMA, EPSILON=EPSILON)

for K in range(3, lb+41):
x.append (K)
EVI_memory = []
for _ in range(NUMITERA4):
updated_y , policy, t, execution_time = Empirical RandomVI (mdp, K=K
)
EVI_memory . append (execution_time)
#print "Random Value Iteration Empirical distribution, K =", K
#print 7 Iterations:”, t
#print ”Execution Time: {0:.3f}”.format(execution_time)
EVI.append(statistics .median (EVI_memory))
subsetSize = NUMSTATES — diff
updated_y , policy, t, execution_time = RandomVI(mdp, subsetSize)
RVI. append (execution_time)

#print "Random Value Iteration ,”, ”Subset Size:”, subsetSize
print ”Iterations:”, t

#print ”Execution Time: {0:.3f}”. format(execution_time)
RVI_mean = statistics.median(RVI)
RVI = [RVI.mean for _ in range(3, 1b+1)]

plotd (x, EVI, RVI, diff)

40

Appendix B
B.1 Small 2D Grid World

On terminal, execute following:

python value.py

Vanilla VI Number of iterations: 14

Execution Time: 0.014

[’¢0,0):°, ’-152.587, *(0,1):?, *-157.86°, *(0,2):’, ’-159.837, *(0,3):’, *-162.29’, °(0,4):’, ’-165.36°]
[’(1,0):’, >-163.22°, ’(1,1):’, ’-159.83°, ’(1,2):’, ’-162.29°, ’(1,3):’, ’-165.367, ’(1,4):’, ’-169.20°’]
[’(2,0):°, ’-154.03?, *(2,1):?, *-157.86°, ’(2,2):’, ’-159.837, *(2,3):’, ’-169.20°, °(2,4):’, ’*-174.00°]
[’(3,0):’>, >-155.03’, ’(3,1):’, ’-166.29°, ’(3,2):’, ’-157.86°, ’(3,3):’, ’-174.00°, ’(3,4):’, ’-180.00’]
[’(4,0):>, >-154.03’, ’(4,1):’, ’-155.03’, ’(4,2):’, ’-156.29°, ’(4,3):’, ’-180.00’, ’(4,4):’, ’>-100.00’]
[°(0,0):’, ’down’, ’(0,1):’, ’right’, ’(0,2):’, ’down’, ’(0,3):’, ’down’, ’(0,4):’, ’down’]

[°(1,0):°, ’down’, °(1,1):°, ’right’, °(1,2):’, ’right’, °(1,3):’, ’right’, ’(1,4):’, ’down’]

[’(2,0):’, ’down’, ’(2,1):’, ’right’, ’(2,2):’, ’up’, ’(2,3):’, ’right’, ’(2,4):’, ’down’]

[°(3,0):’, ’right’, ’(3,1):’, ’right’, ’(3,2):’, ’up’, ’(3,3):’, ’right’, ’(3,4):’, ’down’]

[°(4,0):’, ’up’, ’(4,1):’, ’right’, ’(4,2):’, ’up’, ’(4,3):’, ’right’, ’(4,4):’, ’left’]

Random VI Number of iterations: 2 SubsetSize: 1

Execution Time: 0.000

[’>¢,0):’>, ’0.00°, °(0,1):’, °0.00°, ’(0,2):’, ’0.00°, °(0,3):’, °0.00°, ’(0,4):’, °0.00°]
[°¢,0):’, ’0.00°, °(1,1):’, ’0.00°, ’(1,2):’, ’0.00°, ’(1,3):’, ’0.00°, ’(1,4):’, °0.00’]
[’(2,0):?, ’0.00°, *(2,1):’, ’0.00°, °(2,2):’, °0.00°, ’(2,3):’, °-30.00’, ’(2,4):’, ’0.00’]
[’(3,0):?, 70.007, *(3,1):?, °0.00°, *(3,2):’, *0.00°, *(3,3):’, *0.00°, *(3,4):’, 0.00°]
’(4,0):’, ’0.00°, ’(4,1):’, ’0.00°, ’(4,2):’, ’0.00°, ’(4,3):’, ’0.00’, ’(4,4):’, ’0.00°]
’(0,0):’, ’None’, ’(0,1):’, ’None’, ’(0,2):’, ’None’, ’(0,3):’, ’None’, ’(0,4):’, ’None’]
(1,0):’, ’Nomne’, ’(1,1):’, ’None’, ’(1,2):’, ’None’, ’(1,3):’, ’None’, ’(1,4):’, ’None’]
’(2,0):’, ’None’, ’(2,1):’, ’None’, ’(2,2):’, ’None’, ’(2,3):’, ’left’, ’(2,4):’, ’None’]
’(3,0):’, ’Nome’, ’(3,1):’, ’None’, ’(3,2):’, ’None’, ’(3,3):’, ’None’, ’(3,4):’, ’None’]
’(4,0):’, ’None’, ’(4,1):’, ’None’, ’(4,2):’, ’None’, ’(4,3):’, ’None’, ’(4,4):’, ’None’]

Cyclic VI Number of iteratiomns: 12

Execution Time: 0.011

[’(0,0):>, »-152.58°, ’(0,1):’, ’-157.86°, ’(0,2):’, ’>-159.83’, ’(0,3):’, ’-162.29°, ’(0,4):’, ’-165.36"]
[°(,0):>, »-163.22°, ’(1,1):’, °-159.83’, ’(1,2):’, ’-162.29°, ’(1,3):’, ’-165.367, *(1,4):’, ’-169.20’]
[’(2,0):>, >-154.03’, ’(2,1):’, ’-157.86°, ’(2,2):’, ’-159.83’, ’(2,3):’, ’-169.20°, ’(2,4):’, ’-174.00°’]
[>(3,0):’>, >-1565.03’, °(3,1):’, ’-166.29°, °(3,2):’, ’-157.86°, ’(3,3):’, ’-174.00°, ’(3,4):’, ’-180.00’]
[’(4,0):7, ’-154.03’, *(4,1):’, '-155.03", ’(4,2):’, ’-156.297, *(4,3):’, ’-180.00’, °(4,4):’, -100.00°]
[’(0,0):’, ’down’, ’(0,1):’, ’right’, ’(0,2):’, ’down’, ’(0,3):’, ’down’, ’(0,4):’, ’down’]

[’(1,0):’, ’down’, ’(1,1):’, ’right’, >(1,2):’, ’right’, °(1,3):’, ’right’, ’(1,4):’, ’down’]

[’(2,0):’, ’down’, ’(2,1):’, ’right’, ’(2,2):’, ’up’, °(2,3):’, ’right’, ’(2,4):’, ’down’]

[°(3,0):’, ’right’, °(3,1):’, ’right’, ’(3,2):’, ’up’, ’(3,3):’, ’right’, ’(3,4):’, ’down’]

[°(4,0):, ’up’, ’(4,1):’, ’right’, ’(4,2):’, ’up’, ’(4,3):’, ’right’, ’(4,4):’, ’left’]

Random Permutation Cyclic VI Number of iterations: 9

Execution Time: 0.009

[’¢0,0):°, ’-152.587, *(0,1):?, *-157.86°, *(0,2):’, ’-159.837, *(0,3):’, ’-162.29’, °(0,4):’, ’-165.36°]
[’(1,0):>, >-153.22°, ’(1,1):’, ’-159.83’, ’(1,2):’, ’-162.29°, ’(1,3):’, ’-165.367, ’(1,4):’, ’-169.20°’]
[’(2,0):°, ’-154.03?, *(2,1):?, *-157.86°, ’(2,2):’, ’-159.837, *(2,3):’, ’-169.20°, °(2,4):’, ’*-174.00°]
[’(3,0):’>, >-155.03’, ’(3,1):’, ’-166.29°, ’(3,2):’, ’-157.86°, ’(3,3):’, ’-174.00’, ’(3,4):’, ’-180.00’]
[’(4,0):>, >-154.03’, ’(4,1):’, ’-155.03’, ’(4,2):’, ’-156.29°, ’(4,3):’, ’-180.00’, ’(4,4):’, >-100.00’]
[°(0,0):’, ’down’, ’(0,1):’, ’right’, ’(0,2):’, ’down’, ’(0,3):’, ’down’, ’(0,4):’, ’down’]

[°(1,0):°, ’down’, °(1,1):’, ’right’, °(1,2):’, ’right’, °(1,3):’, ’right’, ’(1,4):’, ’down’]

[’(2,0):’, ’down’, ’(2,1):’, ’right’, ’(2,2):’, ’up’, ’(2,3):’, ’right’, ’(2,4):’, ’down’]

[’°(3,0):’, ’right’, ’(3,1):’, ’right’, ’(3,2):’, ’up’, ’(3,3):’, ’right’, ’(3,4):’, ’down’]

[°(4,0):’, ’up’, ’(4,1):’, ’right’, ’(4,2):’, ’up’, ’(4,3):’, ’right’, ’(4,4):’, ’left’]

*Here, we can notice that the policy obtained by four algorithms as in question 4 to 6
are identical as target policy in Figure 3

41

B.2 General MDPs

On terminal, execute following:

python kimMDP. py

42

