
MS&E 310 Course Project II: Markov Decision Process

Nian Si

niansi@stanford.edu

Fan Zhang

fzh@stanford.edu

This Version: Saturday 2nd December, 2017

1 Introduction

Markov Decision Process (MDP) is a pervasive mathematical framework that models the optimal

decision making process in complex dynamic systems. It is widely used to tackle problems such as

dynamic programming and reinforcement learning. Among methodologies to solve MDP problem,

value iteration method received much attention because of its simplicity and conceptual importance.

In this report we will analyze and implement six typical iterative algorithms for Markov decision

process, i.e.

1. Value Iteration Method (VI)

2. Random Value Iteration Method (Random VI)

3. Random Value Iteration by Action Method(Random VIA)

4. Cyclic Value Iteration Method (Cyclic VI)

5. Randomly Permuted Cyclic Value Iteration Method (RPCyclic VI)

6. Adapted Random Value Iteration by Action Method (AdaRandom VIA)

Algorithm 1 to 5 is introduced in the course project proposal, while Algorithm 6 is proposed by

ourselves as an improvement of Algorithm 3. The intuition behind Algorithm 16 is that the empirical

distribution of optimal actions will converge to an one point distribution, therefore it is unnecessary

to keep a constant sample size.

The report is organized as follows. In section 2 we present the pseudocode of all the iterative

methodology. In section 3, we provide some theoretical analysis, which ensures the convergence of

value iteration method. In section 4, we present the result of numerical experiment that concerning

with the convergence rate of our algorithms using simulated data.

2 Algorithms

In this section, we shall present the pseudocode of all the methods of interest in this report.

1

yyye
Cross-Out

yyye
Comment on Text
Very innovative

yyye
Comment on Text
Nice idea



Algorithm 1 Value Iteration Method (VI)

1: Input: initial value y ∈ Rn, error bound Error = 1000, cost cj and transition probability pj .
2: while Error > 10−8 do
3: For all i = 1, n, update the value

yi ←min
j∈Ai

{cj + γpTj y}.

in a parallel way.
4: Update the Error as the maximum elementwise change in yi.

5: Output: y.

Algorithm 2 Random Value Iteration Method (Random VI)

1: Input: initial value y ∈ Rn, random sample size w, error bound EPS = 1000, cost cj and transition
probability pj .

2: while Error > 10−8 do
3: Sample a subset of state B of size w.
4: For all i ∈ B, update the value

yk+1i ←min
j∈Ai

{cj + γpTj yk}

in a parallel way.
5: Update the Error as the maximum elementwise change in yi.

6: Output: y.

Algorithm 3 Random Value Iteration by Action Method (Random VIA)

1: Input: initial value y ∈ Rn, random sample size w, error bound ERROR = 1000, the frequency

vector f
(i)
j = 1 for all i = 1, n, j = 1,m, cost cj and transition probability pj .

2: while Error > 10−8 do
3: for i = 1, n do
4: Sample a subset of actions A ⊂ Ai of size w, with probability proportional to frequency
f (i).

5: For all i = 1, n, update the value

yk+1i ←min
j∈A

{cj + γpTj yk},

in a parallel way, record j∗ as the index of the optimal strategy.

6: Set f
(i)
j∗ ← f

(i)
j∗ + 1.

7: Update the Error as the maximum elementwise change in yi.

8: Output: y.

2



Algorithm 4 Cyclic Value Iteration Method (Cyclic VI)

1: Input: initial value y ∈ Rn, error bound Error = 1000, cost cj and transition probability pj .
2: while Error > 10−8 do
3: for i = 1, n do
4:

yi ←min
j∈Ai

{cj + γpTj y}.

5: Update the Error as the maximum elementwise change in yi.

6: Output: y.

Algorithm 5 Randomly Permuted Cyclic Value Iteration Method (RPCyclic VI)

1: Input: initial value y ∈ Rn, error bound Error = 1000, cost cj and transition probability pj .
2: while Error > 10−8 do
3: Sample {ki; i = 1, n} as a random permutation of 1, n.
4: for i = 1, n do
5:

yki ← min
j∈Aki

{cj + γpTj y}.

6: Update the Error as the maximum elementwise change in yi.

7: Output: y.

Algorithm 6 Adapted Random Value Iteration by Action Method (AdaRandom VIA)

1: Input: initial value y ∈ Rn, random sample size w, sample size updating rate γ, sample size

lower bound wmin, error bound EPS = 1000, the frequency vector f
(i)
j = 1 for all i = 1, n, j = 1,m,

cost cj and transition probability pj .
2: while Error > 10−8 do
3: for i = 1, n do
4: Sample a subset of actions A ⊂ Ai of size w, with probability proportional to frequency
f (i).

5: For all i ∈ B, update the value

yk+1i ←min
j∈A

{cj + γpTj yk},

in a parallel way, record j∗ as the index of the optimal strategy.

6: Set f
(i)
j∗ ← f

(i)
j∗ + 1.

7: Update the Error as the maximum elementwise change in yi.

8: if w > wmin then
9: Update w = γ ×w.

10: Output: y.

3



3 Theoretical results

In this section, we present the theoretical analysis for different value iteration schemes. In order to

analyze the residual error of value iteration method, we need a procedure to produce the accurate

value of the stationary solutions to value iteration problem. In Theorem 1, we shall prove that

there exist a linear programming problem whose optimal solution represents the optimal stationary

policy to original MDP problem. Therefore, solving the dual linear programing problem yields the

stationary solution to value iteration schemes.

Theorem 1. For the minimization problem

min
x
∑
j∈A1

cjxj +⋯ + ∑
j∈Am

cjxj

s.t. ∑
j∈A1

(e1 − γpj)xj +⋯ + ∑
j∈Am

(em − γpj)xj = e,

xj ≥ 0,∀j,

every basic feasible solution represent a policy, i.e., the basic variables have exactly one variable from

each state i. Furthermore, each variable value is no less that 1, and the sum of all basic variable

values is m
1−γ .

Proof : By adding up all the quality, we have

eTx = m

1 − γ .

Therefore, the sum of all basic variable value is m
1−γ .

Then, we will show a BFS represents a policy. Let B denote the index set of basic variables,

then ∣B∣ =m. Suppose B does not contain any state-action pair for a certain state k, then the k−th

equality constraint fails to hold:

∑
j∈Ak

xj = 0 ≠ 1 + γ∑
i∈S

∑
j∈Ai

xjpji ≥ 1.

Therefore, B contains exactly one state-action pair for each state, and represents a policy of the

discounted MDP problem.

Actually, for a BFS xπ,

∑
j∈Ak

xj = xπk = 1 + γ∑
i∈S

∑
j∈Ai

xjpji ≥ 1.

2
In Lemma 1, we prove that the value iteration scheme is a contraction mapping with Lipchitiz

constant γ, where 0 < γ < 1.

Lemma 1. For the Value Iteration method: starting with any vector y0, then iteratively update it

yk+1i = min
j∈Ai

{cj + γpTj yk},∀i.

4



The contraction result holds:

∥yk+1 − y∗∥
∞
≤ γ ∥yk − y∗∥

∞
,∀k,

where y∗ is the fixed-point or optimal value vector, that is,

y∗i = min
j∈Ai

{cj + γpTj y∗},∀i.

Proof : Let ji be the minimizer that

y∗i = cji + γpTjiy
∗. (3.1)

Then, according to iteration formula, we have

yk+1i = min
j∈Ai

{cj + γpTj yk} ≤ cji + γpTjiy
k. (3.2)

By taking difference of (3.1) and (3.2), we have

yk+1i − y∗i ≤ γpTjiy
k − γpTjiy

∗ ≤ γ ∥yk − y∗∥
∞
.

Let jki be the minimizer that

yk+1i = cjki + γp
T
jki
yk. (3.3)

Then according to fixed-point formula, we have

y∗i = min
j∈Ai

{cj + γpTj y∗} ≤ cjki + γp
T
jki
y∗. (3.4)

By taking difference of (3.3) and (3.4), we have

y∗i − yk+1i ≤ γpT
jki
y∗ − γpT

jki
yk ≤ γ ∥yk − y∗∥

∞
.

Therefore,

∣yk+1i − y∗i ∣ ≤ γ ∥yk − y∗∥
∞
,∀i,

∥yk+1 − y∗∥
∞

≤ γ ∥yk − y∗∥
∞
.

2

Since ∣yk+1i −y∗i ∣ ≤ γ ∥yk − y∗∥
∞

is entry-wise true, after update all the element of y all around, the

resulting composite mapping is a contraction mapping with Lipchitz constant γ as well. Therefore, we

have following theorem, which guarantees the value iteration scheme (VI) has expontial convergence

rate. The convergence rate of Cyclic VI and PRCyclic VI can also be proved in a similar fashion.

Theorem 2. VI, Cyclic VI and PRCyclic VI are have exponential convergence rate; Random VI is

convergent with probability 1 if each state has a positive probability to be selected.

5



Proof : The proof simply follows the result of classical contraction mapping principle. See, for

example, Istrc et al. (1981). 2

Lemma 2 in the following proves that the value iteration scheme (VI) is actually monotone.

Lemma 2. In the VI method, if we have y(1) ≥ y(2), then we have the following entry-wise property:

T (y(1)) ≥ T (y(2)),

where

T (y)i = min
j∈Ai

{cj + γpTj y},∀i.

Furthermore, In the VI method, if starting with any vector y0 ≥ y∗ and y0 ≥ y1, then we have the

following entry-wise monotone property:

y∗ ≤ yk+1 ≤ yk,∀k.

Proof :

cj + γpTj y(1) ≥ cj + γpTj y(2),∀j ∈ Ai,∀i,
min
j∈Ai

{cj + γpTj y(1)} ≥ min
j∈Ai

{cj + γpTj y(2)},∀i

T (y(1)) ≥ T (y(2)).

2

We now present a result about the uniform convergence rate in the following theorem, which

implies all the element in vector yki actually shares the same convergence rate as k → ∞. This is

an interesting phenomenon that we discovered in the numerical experiment at the beginning, so

afterwards we proposed a conjecture that is eventually justified.

Theorem 3. Assume that every state has only 1 optimal action, i.e.

y∗i > ci + γpTj y∗,

for j ∈ Ai and j ≠ arg minj(ci + γpTj y∗). If Markov chain is primitive (or equivalently, irreducible

and aperiodic), when every state chooses the stationary optimal action. Then, In the VI method, we

have

lim
k→∞

mini ∣yki − y∗i ∣
maxi ∣yki − y∗i ∣

= 1,

if maxi ∣yki − y∗i ∣ > 0.

Proof : First let we consider the Markov chain case, in which every state only has one action.

yk+1i = ci + γpTi yk,

6

yyye
Sticky Note
Good lemma to use

yyye
Comment on Text
Good additional assumptions, and it is easily to make it true.



y∗i = ci + γpTi y∗.

By taking the difference of 2 equations, we have

yk+1 − y∗ = γpTi (yk − y∗) .

In matrix form, we have

yk+1 − y∗ = γP (yk − y∗) .
yn+1 − y∗ = γnPn (y1 − y∗) .

Because P is primitive, we have

Pn → [π,π, . . . , π]T ,

where π is the invariant distribution.

lim
k→∞

mini ∣yki − y∗i ∣
maxi ∣yki − y∗i ∣

=
∣πT (y1 − y∗)∣
∣πT (y1 − y∗)∣ = 1.

Now, we go back to the MDP problem. Suppose that

cj1 + γpTj1y
∗ > cj2 + γpTj2y

∗,

⇔ cj1 − cj2 > γ (pj2 − pj1)
T y∗.

According to lemma 1, ∀ε, ∃N, if k > N, we have ∥yk − y∗∥
∞
< ε,

γ (pj2 − pj1)
T yk < γ (pj2 − pj1)

T y∗ + γε ∥pj2 − pj1∥1 ,

by taking ε enough small, we have

γ (pj2 − pj1)
T yk < cj1 − cj2 ,

cj1 + γpTj1y
k > cj2 + γpTj2y

k.

Therefore, after enough steps, we will only choose the optimal action in the MDP problem, which

reduces to the Markov chain case. 2

4 Numerical results

We present the numerical results in following three aspects. First, in Section 4.1, we test the influence

of different sample sizes on convergence rate; Then, in Section 4.2 we compare the the convergence

rate among different algorithms; Finally, in Section 4.3, we test the running time of different algo-

rithms in terms different state size (n), action size (m) and the number of non-zero in each action.

7



Throughout this section, we set the discount factor in MDP γ = 0.9. The error is measured by the

distance generated by infinity norm between the vector and benchmark produced linear program-

ming.

4.1 Sample size

In this section, we test the performance of sample size w for Random VI and Random VIA algorithm

(Algorithm 2 and 3). We fix the state size n = 100, for each state we have m = 20 actions, and the

transition probability pj is a sparse vector with at most nz = 5 nonzero elements. We change the

sample size w in both Random VI and Random VIA algorithm. The plot of log-error versus number

of operations for different sample size is given in Figure 1, where number of operations is defined by

∣B∣nm × step for Random VI and ∣A∣n2 × step for Random VIA.

0 0.5 1 1.5 2 2.5 3 3.5
Number of Operations 107

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g 

er
ro

r

Convergence Rate of Random VI

n
n/2
n/3
n/4
n/5

(a) Convergence Rate of Random VI (Algorithm 2)

0 2 4 6 8 10 12
Number of Operations 106

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

lo
g 

er
ro

r

Convergence Rate of Random VIA

m
m/2
m/3
m/4
m/5

(b) Convergence Rate of Random VIA (Algorithm 3)

Figure 1: Convergence plot of different sample sizes

In Figure 1(a), we learned that the convergence rate of Random VI is insensitive to sample size

and if sample size is n which reduces to VI algorithm, there is no randomness and the convergence

line does not fluctuate. Figure 1(b) reveals that the sample size w = m/2 yields relatively better

performance for Random VIA algorithm. Too small sample size in Random VIA algorithm results

in the problem of instability.

4.2 Convergence rate of Algorithms

We fix the state size n = 100, for each state we have m = 20 actions, and the transition probability

pj is a sparse vector with at most nz = 5 nonzero elements. We fix the sample size to be n/2 or

8



m/2 when implementing random algorithm. The we test the performance of all 6 algorithms given

in Section 2. The convergence rate of different algorithms is depicted in Figure 2.

0 0.5 1 1.5 2 2.5 3 3.5
Number of Operations 107

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

lo
g 

er
ro

r

Convergence Rate of Different Algorithms

VI
Random VI
Random VIA
Cyclic VI
PRCyclic VI
AdaRandom VIA

Figure 2: Convergence rate of Algorithms

Learning from Figure 2, we want to highlight that our algorithm AdaRandom VIA (Algorithm

6) outperforms all the algorithm provided in the project proposal in terms of number of opera-

tions. However, AdaRandom VIA (Algorithm 6) and Random VIA (Algorithm 3) fluctuate a lot

at the beginning. Among five suggested algorithms, Random VIA (Algorithm 3) possess the fastest

convergence rate. The result is presented in Figure 3.

4.3 Running time in terms different state size (n), action size (m) and the number

of non-zero (nz)

We set n = 100 ∼ 500,m = 250, nz = 40 when testing tunning time for different size of states;

n = 500,m = 50 ∼ 250, nz = 40 when test running time for different size of actions; n = 500,m =
250, nz = 40 ∼ 200 for different levels of sparsity. As a benchmark, we also compare the running time

of solving linear programming by cvx package in Matlab.

From Figure 3(a) we learn that the running time has approximately quadratic growth rate when

n grows, which perfectly matches our expectations. The running time of Random VIA slightly drops

when n increases from 400 to 500, probably because of the instability of random algorithm.

From Figure 3(b) we know the running time of value iterative scheme is approximately a linear

function in m, except for our own algorithm AdaRandom VIA. The weird result of AdaRandom VIA

can also be attributed to randomness and instability.

9



100 200 300 400 500
n

0

10

20

30

40

50

60

70
tim

e 
(s

ec
on

d)
Running time for different n

Linear Programming
VI
Random VI
Random VIA
Cyclic VI
PRCyclic VI
AdaRandom VIA

(a) Running time for different n

50 100 150 200 250
m

0

10

20

30

40

50

60

70

80

tim
e 

(s
ec

on
d)

Running time for different m

Linear Programming
VI
Random VI
Random VIA
Cyclic VI
PRCyclic VI
AdaRandom VIA

(b) Running time for different m

0 50 100 150 200
number of non-zeros

0

20

40

60

80

100

120

140

160

180

tim
e 

(s
ec

on
d)

Running time for different sparsity

Linear Programming
VI
Random VI
Random VIA
Cyclic VI
PRCyclic VI
AdaRandom VIA

(c) Running time for different nz

Figure 3: Running time

From Figure 3(c) we know the efficiency of value iterative type algorithms is insensitive to sparsity.

While the LP solver is sensitive to the sparsity structure. As a result, it is preferable to apply value

iteration methodology to solve the SDP if the transition matrix is not sparse.

Among all the algorithm, Cyclic VI performs the best, followed by PRCyclic VI and Random

VIA. It is probably because Cyclic VI use more information in each iteration. Random VI performs

the worst. However, VI and Random VI are easily parallelled to improve performance.

We find the random algorithms spend more running time while using less numbers of operations,

which is caused by the inefficiency of generating random number by Matlab.

5 Conclusion

In this report, we present 6 algorithms to solve MDP and give some theoretical results. Furthermore,

we analyze the numerical performance compared to benchmark method linear programming. Here

are our major finding,

1. All the algorithm have a exponential convergence rate.

2. Random VI is insensitive to the sample size, while Random VIA is sensitive to the sample size

and sample size w =m/2 yields relatively better performance.

3. In terms of number of operations, Random VIA and his modified version AdaRandom VIA has

the best performance.

4. In terms of running time, Cyclic VI and PRCyclic VI has the best performance.

5. The time of generating random number counts for a lot in total running time of random

algorithms.

10

yyye
Sticky Note
Good summary. It would be nice to have some future work on analyzing AdaRandom. Also, AdaRamdom can be easily paralleled, I believe.



References

Istrc, V. et al. (1981). Fixed point theory: an introduction, volume 7. Springer.

11


	Introduction
	Algorithms
	Theoretical results
	Numerical results
	Sample size
	Convergence rate of Algorithms
	Running time in terms different state size (n), action size (m) and the number of non-zero (nz)

	Conclusion



