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1 Algorithms

1.1 Basic Primal ADMM: Two Blocks

Step 1: Update variable x1

xk+1
1 = argmin

x1

Lp(x1,x
k
2,y

k, , sk)

= argmin
x1

cTx1 − yk
T

(Ax1 − b)− sT (x1 − xk2) +
2

β
(‖Ax1 − b‖2 + ‖x1 − xk2‖2)

= argmin
x1

β

2
[xT1 (ATA + I)x1 + (

2

β
cT − 2

β
yk

T
A− 2

β
sT − 2bTA− 2xk

T

2 )x1]

= (ATA + I)−1(− 1

β
c +

1

β
ATyk +

1

β
sk + ATb + xk2).

Step 2: Update variable x2

xk+1
2 = argmin

x2>0
Lp(xk+1

1 ,x2,y
k, , sk)

= argmin
x2>0

sk
T
x2 +

β

2
‖xk+1

1 − x2‖2

= argmin
x2>0

β

2
[xT2 x2 − 2xk+1

1 x2 + xk
T

1 xk+1
1 +

2

β
sTx2]

= argmin
x2>0

xT2 x2 +
2

β
sTx2 − 2xk

T

1 xk+1
1

= argmin
x2>0

∑
i

[x2
2i − (2xk+1

1i −
2

β
ski )x2i].

Thus

x2 = max{xk+1
1 − 1

β
sk,0}.

Step 3: Update y and s

yk+1 = yk − β(Axk+1
1 − b),

sk+1 = sk − β(xk+1
1 − xk+1

2 ).

The way to get preconditioned form is similar.
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1.2 Basic Dual ADMM

Step 1: Update variable y

yk+1 = argmin
y

Ld(y, sk,xk)

= argmin
y
−bTy − xk

T
(ATy + sk − c) +

β

2
‖ATy + sk − c‖2

= argmin
y

β

2
[yTAATy + 2(sk − c)TATy − 2

β
bTy − 2

β
xk

T
ATy]

= argmin
y

yTAATy + (2sk
T − 2cTAT − 2

β
bT − 2

β
xk

T
AT )y

= (AAT )−1(−Ask + Ac +
1

β
b +

1

β
Axk).

Step 2: Update slack variable s

sk+1 = argmin
s>0

Ld(yk+1, s,xk)

= argmin
s>0

−xk
T
s +

β

2
[sT s + 2(yk+1TA− cT )s]

= argmin
s>0

β

2
[sT s + 2(yk+1TA− cT − 1

β
xk

T
)s

= argmin
s>0

sT s− 2(−yk+1TA+ cT +
1

β
xk

T
)s.

We can then get sk+1
i =

{
(−ATyk+1)i + ci + 1

βx
k
i , (−ATyk+1)i + ci + 1

βx
k
i > 0

0 otherwise.
.

Thus the explicit form is

sk+1 = max{−ATyk+1 + c +
1

β
xk,0}.

Step 3: Update x

xk+1 = xk − β(ATyk+1 + sk+1 − c).

1.3 Interior Point ADMM for Primal

min cTx1 − µ
n∑
j=1

log(x2j)
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subject to

Ax1 = b

x1 − x2 = 0

x2 > 0.

We write out its Lagrangian function:

LPµ (x1,x2,y, s) = cTx1−µ
∑
j

log(x2j)−yT (Ax1−b)−sT (x1−x2)+
2

β
(‖Ax1−b‖2+‖x1−x2‖2)

Step 1: Update variable x1

xk+1
1 = argmin

x1

Lpµ(x1,x
k
2,y

k, sk)

= argmin
x1

cTx1 − yk
T

(Ax1 − b)− sk
T

(x1 − xk2) +
2

β
(‖Ax1 − b‖2 + ‖x1 − xk2‖2)

= argmin
x1

β

2
[xT1 (ATA + I)− 2(bTA + xk

T

2 −
1

β
cT +

1

β
yk

T
A +

1

β
sk

T
)x1]

= (ATA + I)−1(ATb + xk2 −
1

β
c +

1

β
ATyk +

1

β
sk)

.
Step 2: Update variable x2

x2 = argmin
x2

Lpµ(xk+1
1 ,x2,y

k, , sk)

= argmin
x2

−µ
∑
j

log(x2j) + sk
T
x2 +

β

2
‖xk+1

1 − x2‖2

By first order condition:

β(x2 − xk+1
1 ) + sk − µX−1

2 = 1

Let d = βxk+1
1 − sk, then we can get

xk+1
2 =

1

2β
[d +

√
d2
. + 4βµe]

where d2
. = [d2

1, d
2
2, ..., d

2
n]T , e = (1, 1, ..., 1)T .

Step 3: Update y and s
The update formula is the same as that in Algorithm 1.
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1.4 Interior Point ADMM for Dual

max bTy + µ
n∑
j=1

log(sj)

subject to

ATy + s = c

s > 0.

whereby the augmented Lagrangian equation:

Ldµ(y, s,x) = −bTy − µ
∑
j

log(sj)− xT (ATy + s− c) +
β

2
‖ATy + s− c‖2

Step 1: Update variable y

yk+1 = argmin
y

Ldµ(y, sk,xk)

= argmin
y
−bTy − xk

T
ATy +

β

2
[yTAATy + 2(s− c)TATy]

= argmin
y

β

2
[yTAATy + 2((sk

T − cT )AT − 1

β
bT − 1

β
xk

T
AT )y]

= (AAT )−1[
1

β
b +

1

β
Axk + A(c− sk)]

Step 2: Update slack variable s

sk+1 = argmin
s>0

Ldµ(yk+1, s,xk)

= argmin
s>0

−µ
∑
j

log(sj)− xk
T
s +

β

2
[sT s + 2(ATy − c)T s]

By first order condition:

−µS−1 + βs + β(ATyk+1 − c)− xk = 0

Let k = x− β(ATy − c). Thus we can get:

s =
1

2β
(k +

√
k2
. + 4βµe)

where e = (1, 1, ..., 1)T .

Step 3: Update x
The update formula is similar to that in Algorithm 2.
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1.5 Multiblock ADMM for Primal

By splitting the problem into N blocks, we solve the following problem

min
N∑
i=1

cTi x1,i

subject to

N∑
i=1

Aix1,i = b

x1,i − x2,i = 0, i = 1, ..., N,

x2,i ≥ 0, i = 1, ..., N

The corresponding Langrangian function is:

LP (x1,1, ...x1,N ,x2,1, ...x2,N ,y, s1, ..., sN )

=
N∑
i=1

Aix1,i − yT (
N∑
i=1

Aix1,i − b)−
N∑
i=1

sTi (x1,i − x2,i)

+
β

2
(‖

N∑
i=1

Aix1,i − b‖2 +
N∑
i=1

‖x1,i − x2,i‖2)

We will update the variables in a fixed order and randomly permutate the
update order.

For the fixed order,

Update x1,i, i = 1...., N

xk+1
1,i = argmin

x1,i

LP (xk+1
1,1 , ...,x

k+1
1,i−1,x1,i,x

k
1,i+1...,x

k
1,N ,x

k
2,1, ...x

k
2,N ,y

k, sk1, ..., s
k
N )

= argmin
x1,i

cTi x1,i − ykTAix1,i − skTi x1,i +
β

2
(xT1,iA

T
i Aix1,i + 2(

∑
j<i

xk+1T
1,j AT

j Aix1,i+∑
j>i

xkT1,jA
T
j Aix1,i − bTAix1,i) + xT1,ix1,i − 2xkT2,ix1,i)

= argmin
x1,i

β

2
[xT1,i(A

T
i Ai + I)x1,i − 2(bTAi + xkT2,i −

1

β
cTi +

1

β
ykTAi +

1

β
skTi +∑

j<i

xk+1T
1,j AT

j Aix1,i +
∑
j>i

xkT1,jA
T
j Aix1,i]

= (AT
i Ai + I)−1(AT

i b +
∑
j<i

xk+1T
1,j AT

j Aix1,i +
∑
j>i

xkT1,jA
T
j Aix1,i + xk2,i

− 1

β
ci +

1

β
AT
i yk +

1

β
ski )
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Update x2,i, i = 1...., N

xk+1
2,i = argmin

x2,i

LP (xk+1
1,1 , ...,x

k+1
1,N ,x

k+1
2,1 , ...,x

k+1
2,i−1,x2,i,x

k
2,i+1, ...,x

k
2,N ,y

k, sk1, ..., s
k
N )

= argmin
x2,i

skTi x2,i +
β

2
(xT2,ix2,i − 2xk+1T

1,i x2,i + xk+1T
1,i xk+1

1,i )

The first order comndition implies:

x2,i = max{xk+1
1,i −

1

β
ski ,0}.

For random permutation (RP-ADMM),

First we generate a random permutation σ of {1, 2, . . . , 2N}. Then for i =
1, 2, . . . , 2N , we update x1,σi if σ(i) ≤ N ; and update x2,σ(i−N) if σ(i) > N .

The update formula is similar to that in the fixed order part,

x1,i = (ATi Ai + I)−1(ATi b +
∑

σ−1(j)<σ−1(i)

xk+1T
1,j AT

j Aix1,i +
∑

σ−1(j)>σ−1(i)

xkT1,jA
T
j Aix1,i

+ xk2,iIσ−1(i+N)>σ−1(i) + xk+1
2,i Iσ−1(i+N)<σ−1(i) −

1

β
ci +

1

β
AT
i yk +

1

β
ski ).

x2,i = max{xk1,iIσ−1(i)>σ−1(i+N) + xk+1
1,i Iσ−1(i)<σ−1(i+N) −

1

β
ski ,0}.

Then we update y and {si}i≤N using a similar method in Algorithm 1.

1.6 Multiblock ADMM for Dual

max
N∑
i=1

bTi yi

subject to

N∑
i=1

(AT )iyi + s = c

s ≥ 0

The corresponding Lagrangian function is:

Ld(y1, ...,yN , s,x) = −
N∑
i=1

bTi yi−xT (

N∑
i=1

(AT )iyi+s−c)+
β

2
‖

N∑
i=1

(AT )iyi+s−c‖2

For the fixed order,
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yk+1
i = argmin

yi

Ldµ(yk+1
1 , ...,yk+1

i−1 ,yi,y
k
i+1, ...,y

k
N , s

k,xk)

= argmin
yi

−bTi yi − xkT (AT )iyi +
β

2
[yTi ((AT )i)

T (AT )i)yi+

2(skT − cT +
∑
j<i

yk+1T
j ((AT )j)

T +
∑
j>i

yk Tj ((AT )j)
T )(AT )iyi]

= (((AT )i)
T (AT )i)

−1[
1

β
bi +

1

β
((AT )i)

Txk

+ ((AT )i)
T (c− sk −

∑
j<i

(AT )jy
k+1
j −

∑
j>i

(AT )jy
k
j )]

For random permutation (RP-ADMM),

We generate a random permutation σ of {1, 2, . . . , N}.

yk+1
i =(((AT )i)

T (AT )i)
−1[

1

β
bi +

1

β
((AT )i)

Txk

+ ((AT )i)
T (c− sk −

∑
σ−1(j)<σ−1(i)

(AT )jy
k+1
j −

∑
σ−1(j)>σ−1(i)

(AT )jy
k
j )]

Finally, update s and x using a similar approach in Algorithm 2.
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2 Numerical Experiments

This section discusses the results and implications of numerical experiments
using the six algorithms respectively, i.e. basic primal ADMM, basic Dual
ADMM, interior point ADMM for the primal and dual LPs, and multiblock
ADMM for primal and dual LPs.

The experiments are implemented on Matlab(R2017b), Intel Core i5 CPU
@ 2.3 GHz processor, 8 GB RAM.

The constraint matrix Am×n is randomly generated from the standard Gaus-
sian distribution. We randomly draw initialization vectors x0, y0 and s0
from the standard Gaussian distribution, and take the absolute value of x0
and s0, to compute b and c in order to ensure primal and dual feasibility

2.1 Basic Primal ADMM: Two Blocks

2.1.1 Problem setting

The problem starts with x0
1 = 1, x0

2 = x0
1, y0 = 0 and s0 = 1. The iteration

will terminate at step k once the following condition is satisfied

||Axk1 − b||+ ||xk1 − xk2||
1 + ||b||

< tol. (1)

Here we define the relative residue as the sum of norm of residues of the two
constraints Ax1 − b = 0, x1 − x2 = 0, divided by the norm of b. Hence
Algorithm 1 will terminate once the relative residue is below the tolerance
error level. For the rest of the numerical experiments, we set tol = 1e−3.
For the rest of this subsection, we take β = 1.00.

2.1.2 Sensitivity analysis of A

We first explore the performance of Algorithm 1 with different sizes of A.
The convergence sensitivity results are summarized below in Figure 1 and
Figure 2:
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Fig. 1: Convergence of Steps with Different Sizes of A

Fig. 2: Convergence of Run Time with Different Sizes of A
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Figure 1 shows that Algorithm 1 converges in steps for m ≤ 800 and n ≤
1000. Further, we observe the following three patterns:

• In general, the number of iterations increases in the number of decision
variables (n).

• The number of iterations decreases slightly in the number of con-
straints m; and in particular, the convergence result is unstable with
different n when m is small (in our experiment when m < 400).

• When n < m and thus A has full column rank, Algorithm 1 converges
with much fewer steps than when A has full row rank.

Figure 2 demonstrates similar convergence sensitivity results in run time:

• In general, run time increases in the number of decision variables (n).

• Run time decreases slightly in the number of constraints (m); it espe-
cially requires more time to converge with small number of constraint
(in our experiment when m < 400); the convergence result with a
small number of constraint is less unstable, compared to the conver-
gence result in steps in Figure 1.

• When n < m and thus A has full column rank, Algorithm 1 converges
much faster than when A has full row rank.

Algorithm 1 does not perform well with small m, holding other condi-
tions constant. Intuitively, by the stopping criterion, a single large residue
||(Ax1−b)i||+||(x1−x2)i|| would have a bigger impact on the overall relative
residue when m is small than when m is large. Therefore, Algorithm 1 is un-
stable in terms of convergence steps when m is small. However, convergence
in run time is not as much affected.

2.1.3 Convergence patterns

Since Algorithm 1 performs stably with large m and n, WLOG, we next
take A ∈ R600×1000 to explore the convergence results with basic ADMM
and generalized ADMM, where the step-size to update y and s is αβ. Here
we take α = 1.5. The results are summarized in Figure 3 and Figure 4:
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Fig. 3: Convergence of Steps(m=600, n=1000) Fig. 4: Convergence of Time(m=600, n=1000)

Under both algorithms, the relative residue decreases fast at the begining
and then slowly converges. We observe that generalized ADMM converges
faster than basic ADMM both in steps and in run time. In particular, the
relative residue of generalized ADMM algorithm first decreases more slowly
than basic ADMM in steps, and then faster.

2.1.4 Sparsity

Finally, we explore the performance of Algorithm 1 under sparse b and c.
The sparse initialization vectors x0 and s0 are generated with randomly
n/5 nonzeros drawn from the standard normal distribution, and y0 with
randomly m/5 nonzeros drawn from the standard normal distribution. We
perform the algorithm on A ∈ R60×80 and A ∈ R3000×4000. Results are
summarized in Figure 5 to Figure 12.

Although Algorithm 1 does not perform well for A ∈ R60×80, it converges
much faster under sparsity. We further similuated 10 times, to find that the
results are also much stabler than the original. On the other hand, the effect
of sparsity is less significant for large constraint matrix A ∈ R3000×4000.

Fig. 5: Steps(m=60, n=80) Fig. 6: Time(m=60, n=80)
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Fig. 7: Steps-Sparse (m=60, n=80) Fig. 8: Time-Sparse (m=60, n=80)

Fig. 9: Steps(m=3000, n=4000) Fig. 10: Time(m=3000, n=4000)

Fig. 11: Steps-Sparse(m=3000, n=4000) Fig. 12: Time-Sparse(m=3000, n=4000)
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2.2 Basic Dual ADMM

2.2.1 Problem setting

The problem starts with y0 = 0, s0 = 1 and x0 = 1. The iteration will
terminate at step k once the following condition is satisfied

||ATyk + sk − c||
1 + ||c||

< tol. (2)

Using a similar definition in Algorithm 1, Algorithm 2 will terminate once
the relative residue is below the tolerance error level. For the rest of this
subsection, we take β = 1.00.

2.2.2 Sensitivity analysis of A

By the formula to update y, A must be nonsingular, and thus m ≤ n. The
performance of Algorithm 2 with different sizes of A is summarized in Figure
13 and Figure 14:

Fig. 13: Convergence of Steps with Different Sizes of A
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Fig. 14: Convergence of Run Time with Different Sizes of A

Figure 13 shows that Algorithm 2 converges in steps for 50 ≤ m ≤ 800 and
800 ≤ n ≤ 2000. We observe the following patterns:

• In general, the number of iterations decreases in m, i.e. the number
of decision variables in dual form; convergence is unstable when m is
small (in our experiment, m < 100).

• No clear pattern is observed associated with n, i.e. the number of con-
straints in dua forml; in particular, the number of iterations increases
slightly in n when m is large (in our experiment m ≥ 600).

Figure 14 shows that Algorithm 2 converges in run time, and we further
observe the following patterns:

• Run time increases significantly in the number of decision variables in
dual form (m).

• Run time increases slightly in the number of constraints in dual form
(n).

The above results are consistent with the intuition that the time to converge
increases with the size of A.

2.2.3 Preconditioning

In the case that m > n, Algorithm 2 does converge, and even in fewer steps
in our simulations, similar to the result of the primal form. However, Am×n
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is singular, and thus the result may not be reliable. Therefore we need to
precondition A and b by (AAT )−1/2. Since Algorithm 2 performs stably
with large m and n, here we take A ∈ R800×600. Figure 15 and Figure
16 illustrates the convergence results. The preconditioned problem does not
converge in 3000 steps. However, the relative residue decreases sharply after
the first iteration and then remains below 0.005 afterwards. In applications
that require less accuracy, Algorithm 2 with preconditioning the problem
may be effective and accurate.

Fig. 15: Convergence of Steps(m=800,n=600) Fig. 16: Convergence of Time(m=800,n=600)

2.3 Interior Point ADMM for Primal

2.3.1 Problem setting

The problem starts with x0
1 = 1, x0

2 = x0
1, y0 = 0 and s0 = 1. The iteration

will terminate at step k once the following conditions are satisfied

||Axk1 − b||+ ||xk1 − xk2||
1 + ||b||

< tol, (3)

||cTx1 − bTy− nµ|| < tol. (4)

The sencond condition is derived from the optimality conditions. We still
define the relative residue as the sum of norm of residues of the two con-
straints Ax1 − b = 0, x1 − x2 = 0, divided by the norm of b.

2.3.2 Sensitivity analysis of A

We first explore the performance of Algorithm 3 with different sizes of A.
The convergence sensitivity results are summarized below in Figure 17 and
Figure 18. Take β = 1.00, µ = 1.00.
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Fig. 17: Convergence of Steps with Different Sizes of A

Fig. 18: Convergence of Run Time with Different Sizes of A

From Figure 17, we observe the following patterns

• Algorithm 3 converges quickly when m ≤ n, and the number of itera-
tions increases in the number of constraints (m).

• When m > n, there is no clear pattern associated with m or n; the
number of steps required to converge fluctuates with different sizes of
A.
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Figure 18 shows that run time increases in both m and n, which is consistent
with intuition.

2.3.3 Convergence patterns

Next, we compare the convergence performance of Algorithm 3 (Interior
Point ADMM for Primal) to that of Algorithm 1 (Basic Primal ADMM),
by taking A ∈ R60×80, A ∈ R300×400, A ∈ R400×300. Results are illustrated
in Figure 19 to Figure 24.

We observe the following patterns:

• Algorithm 3 performs better than Algorithm 1 with small-sized A
(m ≤ n)(Figure 19, Figure 20), and is more stable in terms of steps
and run time when we simulate 10 times.

• Algorithm 3 outperforms Algorithm 1 when m ≤ n, while Algorithm
1 converges faster when m > n.

Fig. 19: Convergence of Steps(m=60,n=80) Fig. 20: Convergence of Time(m=60,n=80)

Fig. 21: Convergence of Steps(m=300,n=400) Fig. 22: Convergence of Time(m=300,n=400)
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Fig. 23: Convergence of Steps(m=400,n=300) Fig. 24: Convergence of Time(m=400,n=300)

In summary, Algorithm 3 is especially applicable to linear programming
problems with fewer constraints and decision variables. But it perform es-
pecially inefficient when m > n.

2.3.4 Outer-iteration

Finally, we implement the Outer-Iteration process by gradually reducing µ
at each step. We start with µ0 = 1.00, and try different β and γ to do
sensitivity analysis. As discussed above, Algorithm 3 performs well when
m ≤ n. WLOG, we take A ∈ R600×800.

Fig. 25: Convergence of Steps with Different β and γ
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Fig. 26: Convergence of Run Time with Different β and γ

Figure 25 and Figure 26 show that in general, the number of iterations as
well as run time decreases in β, and increases in γ. The first observation
is intuitive, because when the ”penalty parameter” is large, the algorithm
would converge faster.

2.4 Interior Point ADMM for Dual

2.4.1 Problem setting

The problem starts with y0 = 0, s0 = 1 and x0 = 1. The iteration will
terminate at step k once the following conditions are satisfied

||ATyk + sk − c||
1 + ||c||

< tol, (5)

||cTx− bTy− nµ|| < tol. (6)

2.4.2 Sensitivity analysis of A

We first explore the performance of Algorithm 4 with different sizes of A. To
preserve the non-singularity of A, we set 50 ≤ m ≤ 800 and 800 ≤ n ≤ 2000.
The convergence sensitivity results are summarized below in Figure 27 and
Figure 28. Take β = 1.00, µ = 1.00.
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From Figure 27, we observe that the number of iterations experiences a sharp
increase when the number of decision variables in dual form, m, decreases to
a small number (in our experiment below 400). The observation is to some
degree consistent with the finding in Algorithm 3.There is no clear pattern
associated with the number of constraints n.

Figure 28 shows that in general, run time increases in both n and m; except
that for each n, we observe an increase in run time when m is small (< 400).

Fig. 27: Convergence of Steps with Different β and γ

Fig. 28: Convergence of Run Time with Different β and γ

22



2.4.3 Convergence patterns

Next, we compare the convergence performance of Algorithm 4 (Interior
Point ADMM for Dual) to that of Algorithm 2 (Basic Dual ADMM), by
taking A ∈ R60×80, and A ∈ R600×1000. We also precondition the problem
and implement on A ∈ R80×60. Results are illustrated in Figure 29 to Figure
34. We observe the following patterns:

• In general, Algorithm 4 outperforms Algorithm 2 in terms of steps and
run time, especially with small-sized A (m ≤ n) (Figure 29, Figure 30,
Figure 31, Figure 32).

• After implementing preconditioning, neither Algorithm 2 or Algorithm
4 converges; however, Algorithm 4 is more accurate than Algorithm 2
with small relative residues (Figure 33, Figure 34).

Fig. 29: Convergence of Steps(m=60,n=80) Fig. 30: Convergence of Time(m=60,n=80)

Fig. 31: Convergence of Steps(m=600,n=1000) Fig. 32: Convergence of Time(m=600,n=1000)
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Fig. 33: Convergence of Steps(m=80,n=60) Fig. 34: Convergence of Time(m=80,n=60)

2.4.4 Outer-iteration

Finally, we implement the Outer-Iteration process using a similar approach
in Algorithm 3. WLOG, we take A ∈ R600×1000.

Fig. 35: Convergence of Steps Fig. 36: Convergence of Time

Figure 35 and Figure 36 show that in general, the number of iterations
decreases in both β and γ. The first observation is intuitive as discussed in
Algorithm 3.

2.5 Multiblock ADMM for Primal

2.5.1 Problem setting

The problem starts with x0
1 = 1, x0

2 = x0
1, y0 = 0, and s0 = 1. Splitting

the problem into N blocks, the iteration will terminate at step k once the
following condition is satisfied

||
N∑
i=1

Aix
k
1,i − b||+ ||

N∑
i=1

(xk1,i − xk2,i)||

1 + ||b||
< tol. (7)
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For the rest of this subsection, we take β = 1.00.

2.5.2 Sensitivity analysis of the number of blocks

Based on the findings in Algorithm 1, we would like to evaluate the perfor-
mance of splitting into different number blocks where Ai has full row rank or
column rank. Therefore, WLOG, we take A ∈ R1000×8000, and split x1 and
x2 each into 2, 4, 8, 16, 32 blocks. We siminulate 30 times, and the average
convergence results are illustrated Table 1. We also include the result using
Algorithm 1 for comparison.

Table 1: Average Convergence Performance by Splitting into 2,4,8,16, 32 Blocks

N blocks Iteration Run time Objective value
RP-ADMM
2 18 5.31e-01 5.25e+02
4 26 7.84e-01 2.60e+03
8 261 8.20e+00 3.12e+03
16 247 7.52e+00 4.31e+03
32 252 8.93e+00 4.38e+03
Fixed-order
2 18 4.72e-01 5.17e+02
4 27 7.62e-01 2.65e+03
8 274 7.86e+00 3.08e+03
16 256 7.80e+00 4.28e+03
32 254 8.95e+00 4.41e+03
Algorithm 1
/ 15 7.62e-01 2.65e+03

We observe the following patterns

• In our experiment, both randomly permuted and fixed-order ADMM
converge; no clear difference in performance efficiency is observed.

• Iteration step decreases significantly when splitting x1 and x2 each into
2 or 4 blocks, further run time decreases by around 1/2 by splitting
into 2 blocks; however, there is an sharp increase in both iteration
steps and run time by around 10 times when splitting into 8 blocks,
and the convergence performance remains stable for 16 and 32 blocks.

• The converging optimal objective value is close to that of Algorithm
1 when splitting into 4 or 8 blocks.

In other words, Algorithm 5, where we either randomly permute the update
order of {x1,i}i≤N and {x2,i}i≤N or update them sequentially, converges
quickly in steps when {Ai}i≤N has full row rank, while it increases compu-
tation complexitiy when {Ai}i≤N has full column rank. In particular the
algorithm converges one time faster than Algorithm 1 when splitting into 2
blocks.
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2.6 Multiblock ADMM for Dual

2.6.1 Problem setting

The problem starts with y0 = 0, s0 = 1 and x0 = 1. For the rest of this
subsection, we take β = 1.00. Splitting the problem into N blocks, the
iteration will terminate at step k once the following condition is satisfied

||
N∑
i=1

(AT )iy
k
i + sk − c||

1 + ||c||
< tol. (8)

2.6.2 Sensitivity analysis of the number of blocks

One important application of Algorithm 6 is that it could treat problems
where m > n, because by splitting AT horizontaly, i.e. “splitting m”, we
can ensure the non-singularity of (ATi )T . Hence we take A ∈ R8000×4000,
and A ∈ R4000×4000, and split y into 2, 4, 8 blocks for the first case and 2,
4, 8, 16 blocks for the second case. We siminulate 30 times, and the average
convergence results are summarized in Table 2 and Table 3.

Table 2: Average Convergence Performance by Splitting into 2,4,8 Blocks (m=8000, n=4000)

N blocks Iteration Run time Objective value Relative residue
RP-ADMM
2 4 4.47e+00 1.47e+03 9.17e-04
4 18 7.32e+00 2.18e+03 9.55e-04
8 19 2.86e+00 8.47e+03 9.97e-04
Fixed-order
2 4 4.39e+00 1.47e+03 9.17e-04
4 20 8.20e+00 1.83e+03 9.09e-04
8 21 3.12e+00 1.65e+03 9.94e-04

Table 3: Average Convergence Performance by Splitting into 2,4,8,16 Blocks (m=4000, n=4000)

N blocks Iteration Run time Objective value Relative residue
RP-ADMM
2 42 6.25e+00 2.91e+03 9.58e-04
4 49 3.27e+00 7.84e+03 9.90e-04
8 52 1.92e+00 9.38e+03 9.86e-04
16 63 1.98e+00 8.73e+03 9.75e-04
Fixed-order
2 42 6.45e+00 2.91e+03 9.58e-04
4 49 3.54e+00 7.58e+03 9.99e-04
8 53 2.00e+00 9.14e+03 9.81e-04
16 57 1.66e+00 9.77e+03 9.80e-04
Algorithm 2
/ 5 2.10e+00 7.66e+02 7.78e-04

Table 2 shows that Algorithm 6 converges by both RP-ADMM and fixed-
order ADMM. However, an increase in N does not significantly improve the
performance in either run tim and convergence steps.
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Table 3 shows that Algorithm 6 is generally outperformed by Algorithm 2
when m ≤ n. Specifically, more steps are required to converge when splitting
into 2,4,8 or 16 blocks; run time increases with 2 and 4 blocks, and decreases
slightly with 8 and 16 blocks, compared to Algorithm 2. Finally, in general,
Algorithm 6 produces unstable optimal objective value.

27

yyye
Sticky Note
Overall good reports. May list further research topics.



References

[1] Chen, He, Ye, and Yuan. The direct extension of ADMM for multi-block
convex minimization problems is not necessarily convergent. Mathemat-
ical Programming. 155 (1-2), 2016, 57-79.

[2] Boyd, Parikh, Chu, Peleato and Eckstein. Distributed Optimization and
Statistical Learning via the Alternating Direction Method of Multipliers.
Foundations and Trends in Machine Learning. Volume3, Issue1, January
2011, Pages 1-122.

[3] Giselsson and Boyd. Diagonal Scaling in Douglas-Rachford Splitting and
ADMM. 53rd IEEE Conference on Decision and Control. December 15-
17, 2014. Los Angeles, California, USA.

[4] Sun, Luo and Ye. On the expected convergence of randomly permuted
ADMM. arXiv preprint arXiv:1503.06387, 2015.

[5] O’Donoghue, Chu, Parikh and Boyd. Conic Optimization via Opera-
tor Splitting and Homogeneous Self-Dual Embedding. Journal of Opti-
mization Theory and Applications. June 2016, Volume 169, Issue 3, pp
1042C1068.

[6] Eckstein and Yao. Understanding the Convergence of the Alternating
Direction Method of Multipliers: Theoretical and Computational Per-
spectives.
https://pdfs.semanticscholar.org

28




