
The Alternating Direction Method of Multipliers for
Linear Programming

Jonathan Tuck

December 10, 2017

Abstract

In this paper, we derive the Alternating Direction Method of Multipliers (ADMM)
algorithm for the specific case of linear programming. In addition to this derivation,
we also implement this algorithm for the dual of the linear programming problem. We
formulate the ADMM solution in an interior-point context, and analyze its performance
to the implementation on the classical linear programming problem, and to an open-
source solver. Lastly, we compare ADMM when the input data are not preconditioned
to when the input data are preconditioned, and analyze the results.

1

Contents

1 Introduction 3

2 ADMM for the Primal 3

3 ADMM for the dual 4

4 Interior-point ADMM 5
4.1 Interior-point ADMM for the primal . 5
4.2 Interior-point ADMM for the dual . 6

5 Examples 7
5.1 Implementation of ADMM on the primal and dual problems 7
5.2 Implementation of interior-point ADMM . 8
5.3 Preconditioned ADMM . 11

6 Conclusion 13

A MATLAB code for projects 14

2

1 Introduction

Consider the generic, primal linear program [BV04, LY15]

minimizex cTx
subject to Ax = b

x ≥ 0
(1)

and its corresponding dual

maximizey,s bTy
subject to ATy + s = c

s ≥ 0.
(2)

Here, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn are the problem data, x ∈ Rn is the primal opti-
mization variable, and y ∈ Rm, s ∈ Rn are the dual optimization variables corresponding
to the objective and the equality constraints of the primal problem (1), respectively. Prob-
lems (1) and (2) will henceforth be referred to as the primal problem and the dual problem,
respectively.

2 ADMM for the Primal

Let us define the augmented Lagrangian [PB14] of the primal problem (1), Lp : Rn×Rn → R
as

Lp(x, y) = cTx− yT (Ax− b) + (β/2)‖Ax− b‖22. (3)

Typically, x and y represent the primal and dual variables, respectively, and β > 0 is a
penalty parameter. In addition, if there are more than one (say, k) primal decision variables,
x1, . . . , xk, then we can extend the augmented Lagrangian to incorporate these variables. In
such a case, we denote the augmented Lagrangian by Lp(x1, . . . , xk, y).

Now, let us first convert the primal problem (1) into an equivalent problem, what we
refer to as ADMM standard form:

minimizex1,x2 cTx1
subject to Ax1 = b

x1 − x2 = 0
x2 ≥ 0.

(4)

Note that we now have an additional constraint, which in turn means that we have a new
dual variable, s, in this problem’s corresponding augmented Lagrangian. The augmented
Lagrangian for the problem (4) is then

Lp(x1, x2, y, s) = cTx1− yT (Ax1− b)− sT (x1− x2) + (β/2)
(
‖Ax1 − b‖22 + ‖x1 − x2‖22

)
. (5)

Then, given starting points x01, x
0
2 ≥ 0, and initial starting points for the dual variables

(y0, s0), the ADMM solves the problem (4) by the following update scheme:

3

xk+1
1 = argmin

x1

Lp(x1, x
k
2, y

k, sk)

xk+1
2 = argmin

x2≥0
Lp(xk+1

1 , x2, y
k, sk)

yk+1 = yk − β(Axk+1
1 − b)

sk+1 = sk − β(xk+1
1 − xk+1

2).

(6)

This update scheme is advantageous because it converts solving a constrained optimiza-
tion problem into solving a series of unconstrained optimization problems, which are typi-
cally much easier to solve than the original constrained problem. In face, in all cases that
we analyze, all update steps have closed form solutions.

Update on x1. The update on xk+1
1 can be further simplified into a closed-form update

by noting that
∇x1L

p(x1, x
k
2, y

k, sk) = 0.

From this, we immediately see that

c− ATyk − sk + βAT (Ax1 − b) + (x1 − xk2) = 0,

which in turn gives us the update

xk+1
1 = (βATA+ I)−1(ATy − c+ sk + βAT b+ 2xk2). (7)

Update on x2. The updates on xk+1
2 must be derived differently, due to the constraint

that xk+1
2 ≥ 0. Although the update for xk+1

2 involves solving a quadratic program over the
nonnegative cone, a closed form exists. In fact, it can be shown that the update is [PB14]

xk+1
2 = max{x1 − s/β, 0}, (8)

where max is taken elementwise. The interpretation for this update is natural: we are
projecting the solution of ∇x2L

p(xk+1
1 , x2, y

k, sk) = 0 onto the nonnegative cone.

3 ADMM for the dual

ADMM can, in a similar way as in the primal problem, be implemented for the dual problem.
We start, like in the primal case, by noting that the augmented Lagrangian for the dual
problem, Ld : Rm ×Rn ×Rn → R, is

Ld(y, s, x) = −bTy − xT (ATy + s− c) + (β/2)‖ATy + s− c‖22. (9)

We update y, then s, then x, iteratively until a specified tolerance has been reached.
That is, we repeat the following steps until convergence:

yk+1 = argmin
y

Ld(y, sk, xk)

sk+1 = argmin
s≥0

Ld(yk+1, s, xk)

xk+1 = xk − β(ATyk+1 + sk+1 − c).

(10)

4

These updates are relatively easy to handle; in fact, there exists closed form expressions for
all of these updates (the update on x is already in closed form.)

Update on y. The update on yk+1 can be further simplified into a closed-form update by
noting that

∇yL
d(y, sk, xk) = 0.

From this, we immediately see that

−b− Axk + βA(ATy + sk − c),

which in turn gives us the update

yk+1 = (1/β)(AAT)−1(b+ Axk + βA(c− sk)). (11)

Update on s. The update on s is the projection of ∇sL
d(yk+1, s, xk) = 0 onto the non-

negative cone. Thus, the update becomes

sk+1 = max{(1/β)xk − ATyk+1 + c, 0}, (12)

where max is taken elementwise.

4 Interior-point ADMM

Consider the generic, primal linear program with a logarithmic barrier function

minimizex cTx− µ
∑
j

log xj

subject to Ax = b
x > 0,

(13)

or its dual,

maximizex bTy + µ
∑
j

log sj

subject to ATy + s = c
s > 0.

(14)

As µ→ 0, the solutions to problems (13) and (14) approach the solutions to the primal and
dual problems, respectively [Ren01].

4.1 Interior-point ADMM for the primal

We solve the problem (13) using the identical ADMM framework for solving the primal
problem. Like in §2, we convert the problem (13) to ADMM standard form:

minimizex cTx1 − µ
∑
j

log (x2)j

subject to Ax1 = b
x1 − x2 = 0
x1 > 0,

(15)

5

which in turn gives us an augmented Lagrangian, with dual variables y and s,

Lpµ(x1, x2, y, s) = cTx1−µ
∑
j

log (x2)j−yT (Ax1−b)−sT (x1−x2)+(β/2)(‖Ax1−b‖22+‖x1−x2‖22).

(16)
Note that since x1 = x2 in the constraints, we can interchangably switch x1 and x2 so to
make the updates for each step easier to compute. We can now solve the problem (15) using
ADMM. The updates are identical as in the problem (6), so all that is left to find are the
appropriate closed-form updates for x1 and x2.

x1 update. To find the closed-form update for x1, notice that the only difference between
this problem’s augmented Lagrangian and the augmented Lagrangian of (5) is the term
−µ
∑
j

log (x2)j, whose gradient with respect to x1 vanishes. Thus, the x1 update for this

problem is identical to the x1 update in (6).

x2 update. As for the x2 update, we take ∇x2L
p
µ(x1, x2, y, s) elementwise and equate it to

zero: {
∇x2L

p
µ(xk+1

1 , x2, y
k, sk)

}
j

=
−µ

(x2)j
+ sj + β((x1)j − (x2)j)

= 0,

which in turn leads to the update

(x2)
k+1
j = (1/2β)

(
sj + β(x1)j +

√
(sj + β(x1)j)2 + 4µβ

)
, j = 1, . . . , n. (17)

Outer iteration. In order to achieve a stable solution, we gradually reduce µ as an outer
iteration. That is, we start with some µ = µ0, and solve the problem (13) using ADMM.
Then, we decrease µ by some constant γ ∈ (0, 1) and repeat the process. This process allows
us, in a stable fashion, to have µ → 0, ultimately leading us to the solution of the primal
problem (1).

4.2 Interior-point ADMM for the dual

The methodology for deriving ADMM for the problem (14) is nearly identical to its primal
counterpart. The augmented Lagrangian of the problem (14) is

Ldµ(y, s, x) = −bTy − µ
∑
j

log(sj)− xT (ATy + s− c) + (β/2)‖ATy + s− c‖22. (18)

Like in §3, we update y, then s, then x, iteratively until a specified tolerance has been
reached. That is, we repeat the steps outlined in (10) until convergence, replacing Ld with
Ldµ. The update on the x variable is trivial and already in closed form, and we identically
utilize an outer iteration on µ as we did for solving (13).

6

yyye
Sticky Note
Clean formula

Update on y. The update on the y variable can be further simplified into a closed-form
update by noting that

∇yL
d
µ(y, sk, xk) = 0,

from which we immediately see that

−b− Axk + βA(ATy + sk − c) = 0.

In turn, this gives us the update

yk+1 = (1/β)(AAT)−1(b+ Axk + βA(c− sk)). (19)

Notice that this update is identical to the y update in ADMM for the original dual problem
(2).

Update on s. In a similar fashion to the x2 update for the primal barrier problem (13),
we take ∇sL

d
µ(yk+1, s, xk) and equate it to zero:

{∇sL
d
µ(yk+1, s, xk)}j =

−µ
sj
− xkj + β((ATyk+1)j + sj − cj)

= 0,

which in turn leads to the update

sk+1
j = (1/2)(cj + xkj/β − (ATyk+1)j) + (1/2β)

√
β2((ATyk+1)j − xkj/β − cj)2 + 4βµ. (20)

5 Examples

For these examples, the ground-truth optimal values for the problems (1) and (2) were
obtained using CVX [GB14], an open-source convex optimization package.

Problem instance. For the experiments that follow, we let n = 50 and m = 5, and
randomly generate problem instances by randomly generating A ∈ Rm×n, b ∈ Rm, and
c ∈ Rn. In addition, we let β = 1 and γ = 0.75 unless stated otherwise.

5.1 Implementation of ADMM on the primal and dual problems

Figure 1 below shows the residual of ADMM versus the iteration when solving problems (1)
and (2), respectively. From the results, ADMM seems to work well, albeit at a relatively slow
rate: on average, it takes about 1000 iterations to get approximately 10−5 away from the
optimal solution. However, for modest accuracy (i.e., 10−2 away from the optimal solution,)
we see that it emperically takes approximately 200 iterations.

7

Figure 1: Graph of residual versus iteration when solving problems (1) and (2), respectively from
left to right, using ADMM.

5.2 Implementation of interior-point ADMM

Figure 2 below shows the residual of solving the problems (13) and (14), respectively. From
this graph, it is clear that solving (13) and (14) using ADMM is a valid and viable choice, as
we see that the solution after 1000 iterations is approximately 10−7 away from the optimal
solution. In addition, we implement interior-point ADMM using an Outer-Iteration process,
with fixed γ. Comparing Figure 2 to Figure 1, we find that using ADMM to solve the barrier
problems (13) and (14) achieves a slightly higher, but still noticable, degree of optimality
than simply using ADMM to solve problems (1) and (2), respectively.

8

Figure 2: Graph of residual versus iteration when solving problems (13) and (14) (from left to
right, respectively) using ADMM.

Varying γ. Here, we implement ADMM for the primal barrier problem (13) and vary
γ. Specifically, we let γ ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 0.99}. Figure 3 shows the residual versus
iteration for solving the primal barrier problem (13) for the various γ. Emperically, small
values of γ, specifically those close to 1, have relatively bad convergence rates, whereas all
of the values of γ greater than or equal to 0.8 have similar or slightly varying convergence
rates, with the fastest convergence rate belonging to γ = 0.8.

9

Figure 3: Graph of residual versus iteration when solving problems (13) using ADMM, and for
γ ∈ {0.01, 0.2, 0.4, 0.6, 0.8, 0.99}.

Varying β. Here, we implement ADMM for the primal barrier problem (13) and vary
β. Specifically, we let β ∈ {1, 10, 100, 500, 1000}. Figure 4 illustrates the residual versus
iteration for solving the primal barrier problem (13) for the various β. Emperically, increasing
β increases the convergence rate of the algorithm, up to a point: we see that the convergence
rate of the algorithm gets better for increasing β ∈ {1, 10, 100}, but for β = 500, the
convergence rate is markedly worse, and moreso for β = 1000.

10

yyye
Sticky Note
Good observations

Figure 4: Graph of residual versus iteration when solving problems (13) using ADMM, and for
β ∈ {1, 10, 100, 500, 1000}.

5.3 Preconditioned ADMM

In this case, we let A′ = (AAT)−1/2A and b′ = (AAT)−1/2b, and consider the primal problem

minimizex cTx1
subject to A′x1 = b′

x1 − x2 = 0
x2 ≥ 0.

(21)

Note that we only consider the primal problem, although the dual problem is trivially simi-
lar. Problem (21) is equivalent to problem (4), but now A′ and b′ are preconditioned [TB97],
i.e., the condition number of the system is smaller, or a small perturbation in the input will
similarly only perturb the optimal solution by a small amount. Figure 5 below compares
the performance to solving the non-conditioned problem instance with solving the precon-
ditioned problem instance for both the primal and the dual. Notice that for the primal, the
convergence is much smoother, and convergence occurs at a faster rate. As for the dual, both
problem instances have approximately the same convergence rate. Our justification for why
the preconditioned dual does not see better convergence rates is that the preconditioning of
A to A′ and b to b′ acts like a pseudo dual update. As a benchmark, the preconditioned
problem instance for the primal gets within 10−6 of the optimal solution approximately 350
iterations quicker than its non-conditioned problem instance counterpart. This emperical
evidence shows that there exists problem instances in which preconditioning the data results
in faster convergence rates.

11

yyye
Comment on Text
Good summary

Figure 5: Graph of residual versus iteration when solving problems (1) and (2) (left to right,
respectively) using ADMM, for both a non-conditioned case and a preconditioned case.

In addition, we precondition A and b and solve the barrier problem (13). Figure 6 below
compares the performance to solving the non-conditioned problem instance with solving
the preconditioned problem instance (We ignore the dual case for reasons explained above.)
Again, notice that the convergence is smoother, and convergence occurs at a faster rate. For
example, the preconditioned problem instance gets within 10−8 of the optimal solution 300
iterations quicker than the non-conditioned problem instance.

12

Figure 6: Graph of residual versus iteration when solving problem (13) using ADMM, for both a
non-conditioned case and a preconditioned case.

6 Conclusion

In this paper, we have derived the Alternating Direction Method of Multipliers (ADMM)
algorithm for the specific case of linear programming. In addition to this derivation, we also
implemented this algorithm for the dual of the linear programming problem. We formulated
the ADMM solution in an interior-point context, and analyze its performance to the imple-
mentation on the classical linear programming problem, and to an open-source solver. Lastly,
we compare ADMM when the input data are not preconditioned to when the input data are
preconditioned, and analyze the results. For the linear programming case, our results show
that we can achieve modest accuracy in only a few hundred iterations, and can achieve high
accuracy in less than 1000 iterations. In addition, we find that preconditioning our data can
achieve us the same accuracy in a fashion that requires upwards of 350 iterations less than
before.

Acknowledgements

The author would like to thank Professor Yinyu Ye for his insightful conversations regarding
preconditioning and his advice in how to refine this paper.

13

A MATLAB code for projects

Attached to this paper are the MATLAB functions used to generate the results in this
paper. Note that the code does not stop iterating at a given tolerance; this is intentional,
and is done to equivalently see how much accuracy one can achieve for a given number of
iterations.

14

References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[GB14] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex
programming, version 2.1, March 2014.

[LY15] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming. Springer
Publishing Company, Incorporated, 2015.

[PB14] Neal Parikh and Stephen Boyd. Proximal algorithms. Found. Trends Optim.,
1(3):127–239, January 2014.

[Ren01] James Renegar. A Mathematical View of Interior-point Methods in Convex Opti-
mization. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2001.

[TB97] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. SIAM, 1997.

19

