MS\&E 310 Course Project III: First-Order Potential or Barrier Reduction for Linear Programming

Yinyu Ye

November 5, 2017

1 Convex optimization over the simplex constraint

We consider the following optimization problem over the simplex:

$$
\begin{array}{cc}
\text { Minimize } & f(\mathbf{x}) \tag{1}\\
\text { Subject To } & \mathbf{e}^{T} \mathbf{x}=n ; \mathbf{x} \geq \mathbf{0},
\end{array}
$$

where \mathbf{e} is the vector of all ones. This problem is to minimize a nonlinear function with a Simplex constraint. Such a problem in considered in [7], where function $f(\mathbf{x})$ does not need to be convex and a FPTAS algorithm was developed for computing an approximate KKT point of general quadratic programming. The following algorithm and analysis resemble those in [7].

We assume that $f(\mathbf{x})$ is a convex function in $\mathbf{x} \in R^{n}$ and $f\left(\mathbf{x}^{*}\right)=0$ where \mathbf{x}^{*} is a minimizer of the problem. Furthermore, we make a standard Lipschitz assumption such that

$$
f(\mathbf{x}+\mathbf{d})-f(\mathbf{x}) \leq \nabla f(\mathbf{x})^{T} \mathbf{d}+\frac{\gamma}{2}\|\mathbf{d}\|^{2},
$$

where positive γ is the Lipschitz parameter. Note that any homogeneous linear feasibility problem, e.g., the canonical Karmarkar form in [2]:

$$
\begin{gathered}
A \mathbf{x}=\mathbf{0} \\
\mathbf{e}^{T} \mathbf{x}=n ; \\
\mathbf{x} \geq \mathbf{0} .
\end{gathered}
$$

can be formulated as the model with $f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}\|^{2}$ and γ as the half of the largest eigenvalue of matrix $A^{T} A$.

Furthermore, any linear programming problem in the standard form and its dual

Minimize	$\mathbf{c}^{T} \mathbf{x}$	Maximize	$\mathbf{b}^{T} \mathbf{y}$
Subject to	$A \mathbf{x}=\mathbf{b} ; \mathbf{x} \geq \mathbf{0} ;$	Subject to	$A^{T} \mathbf{y}+\mathbf{s}=\mathbf{c} ; \mathbf{s} \geq \mathbf{0}$

can be represented as a homogeneous linear feasibility problem (Ye et al. [5]):

$$
\begin{gathered}
A \mathbf{x}-\mathbf{b} \tau=0 \\
-A^{T} \mathbf{y}-\mathbf{s}+\mathbf{c} \tau=0 \\
\mathbf{b}^{T} \mathbf{y}-\mathbf{c}^{T} \mathbf{x}-\kappa=0 \\
\mathbf{e}^{T} \mathbf{x}+\mathbf{e}^{T} \mathbf{s}+\tau+\kappa=2 n+2 \\
(\mathbf{x}, \mathbf{s}, \tau, \kappa) \geq \mathbf{0}
\end{gathered}
$$

We consider the potential function (e.g., see $[2,4,1,6]$)

$$
\phi(\mathbf{x})=\rho \ln (f(\mathbf{x}))-\sum_{j} \ln \left(x_{j}\right)
$$

(alternatively, one may consider barrier function $b_{\mu}(\mathbf{x})=f(\mathbf{x})-\mu \sum_{j} \ln \left(x_{j}\right)$ for a small fixed μ)
where $\rho \geq n$ over the simplex. Clearly, if we start from $\mathbf{x}^{0}=\mathbf{e}$, the analytic center of the simplex, and generate a sequence of points $\mathbf{x}^{k}, k=1, \ldots$, whose potential value is strictly decreased, then when

$$
\phi\left(\mathbf{x}^{k}\right)-\phi\left(\mathbf{x}^{0}\right) \leq-\rho \ln (1 / \epsilon)
$$

we must have

$$
\rho \ln \left(f\left(\mathbf{x}^{k}\right)\right)-\rho \ln \left(f\left(\mathbf{x}^{0}\right)\right) \leq-\rho \ln (1 / \epsilon)
$$

or

$$
\frac{f\left(\mathbf{x}^{k}\right)}{f\left(\mathbf{x}^{0}\right)} \leq \epsilon
$$

This is because on the simplex

$$
\sum_{j} \ln \left(x_{j}^{k}\right) \leq \sum_{j} \ln \left(x_{j}^{0}\right), \forall k=1, \ldots
$$

We now describe a first order steepest descent potential reduction algorithm in the next section

2 Steepest-Descent Potential Reduction and Complexity Analysis

Note that the gradient vector of the potential function of $x>0$ is

$$
\nabla \phi(\mathbf{x})=\frac{\rho}{f(\mathbf{x})} \nabla f(\mathbf{x})-X^{-1} \mathbf{e}
$$

where in this note X denotes the diagonal matrix whose diagonal entries are elements of vector \mathbf{x}.
The following lemma is well known in the literature of interior-point algorithms ($[2,1,6]$):
Lemma 1. Let $\mathbf{x}>\mathbf{0}$ and $\left\|X^{-1} \mathbf{d}\right\| \leq \beta<1$. Then

$$
-\sum_{j} \ln \left(x_{j}+d_{j}\right)+\sum_{j} \ln \left(x_{j}\right) \leq-\mathbf{e}^{T} X^{-1} \mathbf{d}+\frac{\beta^{2}}{2(1-\beta)}
$$

Lemma 2. For any $\mathbf{x}>\mathbf{0}$ and $\mathbf{x} \neq \mathbf{x}^{*}$, a matrix $A \in R^{m \times n}$ with $A \mathbf{x}=A \mathbf{x}^{*}$, and a vector $\bar{\lambda} \in R^{m}$, consider vector

$$
\mathbf{p}(\mathbf{x})=X\left(\nabla \phi(\mathbf{x})-A^{T} \bar{\lambda}\right)
$$

Then,

$$
\|\mathbf{p}(\mathbf{x})\| \geq 1
$$

Proof. First,

$$
\mathbf{p}(\mathbf{x})=X\left(\frac{\rho}{f(\mathbf{x})} \nabla f(\mathbf{x})-X^{-1} \mathbf{e}-A^{T} \bar{\lambda}\right)=\frac{\rho}{f(\mathbf{x})} X\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)-\mathbf{e}
$$

If any entry of $\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)$ is equal or less than 0 , then $\|\mathbf{p}(\mathbf{x})\| \geq\|\mathbf{p}(\mathbf{x})\|_{\infty} \geq 1$. On the other hand, if $\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)>\mathbf{0}$, we have $\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T} \mathbf{x}^{*} \geq 0$. Then, from convexity and $A \mathbf{x}=A \mathbf{x}^{*}$,

$$
f\left(\mathbf{x}^{*}\right)-f(\mathbf{x}) \geq \nabla f(\mathbf{x})^{T}\left(\mathbf{x}^{*}-\mathbf{x}\right)=\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T}\left(\mathbf{x}^{*}-\mathbf{x}\right)
$$

Thus, from $f\left(\mathbf{x}^{*}\right)=0$

$$
f(\mathbf{x}) \leq\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T} \mathbf{x}
$$

Furthermore,

$$
\begin{aligned}
\|\mathbf{p}(\mathbf{x})\|^{2} & =\frac{\rho^{2}}{f(\mathbf{x})^{2}}\left\|X\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)\right\|^{2}-2 \frac{\rho}{f(\mathbf{x})}\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T} \mathbf{x}+n \\
& \geq \frac{\rho^{2}}{n \cdot f(\mathbf{x})^{2}}\left\|X\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)\right\|_{1}^{2}-2 \frac{\rho}{f(\mathbf{x})}\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T} \mathbf{x}+n \\
& \geq \frac{\rho^{2}}{n}\left(\frac{\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T} \mathbf{x}}{f(\mathbf{x})}\right)^{2}-2 \rho\left(\frac{\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T} x}{f(\mathbf{x})}\right)+n \\
& =\frac{(\rho z)^{2}}{n}-2 \rho z+n=\frac{1}{n}(\rho z-n)^{2}
\end{aligned}
$$

where

$$
z=\frac{\left(\nabla f(\mathbf{x})-\frac{f(\mathbf{x})}{\rho} A^{T} \bar{\lambda}\right)^{T} \mathbf{x}}{f(\mathbf{x})} \geq 1
$$

The above quadratic function of z has the minimizer at $z=1$ if $\rho \geq n$, so that

$$
\frac{1}{n}(\rho z-n)^{2} \geq \frac{1}{n}(\rho-n)^{2} \geq 1
$$

for $\rho \geq n+\sqrt{n}$.

For any given $\mathbf{x}>\mathbf{0}$ in the simplex and any \mathbf{d} with $\mathbf{e}^{T} \mathbf{d}=0$,

$$
f(\mathbf{x}+\mathbf{d})-f(\mathbf{x}) \leq \nabla f(\mathbf{x})^{T} \mathbf{d}+\frac{\gamma}{2}\|\mathbf{d}\|^{2} \leq \nabla f(\mathbf{x})^{T} \mathbf{d}+\frac{\gamma}{2}\left\|X X^{-1} \mathbf{d}\right\|^{2} \leq \nabla f(\mathbf{x})^{T} \mathbf{d}+\frac{\gamma}{2}\left\|X^{-1} \mathbf{d}\right\|^{2}
$$

where the last inequality is due to $\|X\| \leq 1$. Let $\left\|X^{-1} \mathbf{d}\right\|=\beta<1$ and $\mathbf{x}^{+}=\mathbf{x}+\mathbf{d}=X\left(\mathbf{e}+X^{-1} \mathbf{d}\right)>\mathbf{0}$. Then, from Lemma 1

$$
\begin{aligned}
\phi\left(\mathbf{x}^{+}\right)-\phi(\mathbf{x}) & \leq \rho \ln \left(1+\frac{\nabla f(\mathbf{x})^{T} \mathbf{d}+\frac{\gamma}{2}\left\|X^{-1} \mathbf{d}\right\|^{2}}{f(\mathbf{x})}\right)-\mathbf{e}^{T} X^{-1} \mathbf{d}+\frac{\beta^{2}}{2(1-\beta)} \\
& \leq \rho \frac{\nabla f(\mathbf{x})^{T} \mathbf{d}+\frac{\gamma}{2}\left\|X^{-1} \mathbf{d}\right\|^{2}}{f(\mathbf{x})}-\mathbf{e}^{T} X^{-1} \mathbf{d}+\frac{\beta^{2}}{2(1-\beta)} \\
& =\nabla \phi(\mathbf{x})^{T} \mathbf{d}+\frac{\rho \gamma}{2 f(\mathbf{x})} \beta^{2}+\frac{\beta^{2}}{2(1-\beta)} .
\end{aligned}
$$

The first order steepest descent potential reduction algorithm would update \mathbf{x} by solving

$$
\begin{array}{cc}
\text { Minimize } & \nabla \phi(\mathbf{x})^{T} \mathbf{d} \tag{2}\\
\text { Subject to } & \mathbf{e}^{T} \mathbf{d}=0,\left\|X^{-1} \mathbf{d}\right\| \leq \beta ;
\end{array}
$$

or

$$
\begin{array}{cc}
\text { Minimize } & \nabla \phi(\mathbf{x})^{T} X \mathbf{d}^{\prime} \\
\text { Subject to } & \mathbf{e}^{T} X \mathbf{d}^{\prime}=0,\left\|\mathbf{d}^{\prime}\right\| \leq \beta
\end{array}
$$

where parameter $\beta<1$ is yet to be determined.
Let the scaled gradient projection vector

$$
\mathbf{p}(\mathbf{x})=\left(I-\frac{1}{\|\mathbf{x}\|^{2}} X \mathbf{e e}^{T} X\right) X \nabla \phi(\mathbf{x})=X\left(\frac{\rho}{f(\mathbf{x})}(\nabla f(\mathbf{x})-\mathbf{e} \cdot \lambda(\mathbf{x}))\right)-\mathbf{e}
$$

where

$$
\lambda(\mathbf{x})=\frac{\mathbf{e}^{T} X^{2} \nabla \phi(\mathbf{x}) \cdot f(\mathbf{x})}{\|\mathbf{x}\|^{2} \cdot \rho}
$$

Then the minimizer of problem (2) would be

$$
\mathbf{d}=-\frac{\beta}{\|p(\mathbf{x})\|} X \mathbf{p}(\mathbf{x})
$$

and

$$
\nabla \phi(\mathbf{x})^{T} \mathbf{d}=-\frac{\beta}{\|\mathbf{p}(\mathbf{x})\|}\|\mathbf{p}(\mathbf{x})\|^{2}=-\beta\|\mathbf{p}(\mathbf{x})\| \leq-\beta
$$

since $\|\mathbf{p}(\mathbf{x})\| \geq 1$ based on Lemma 2.
Thus,

$$
\phi\left(\mathbf{x}^{+}\right)-\phi(\mathbf{x}) \leq-\beta+\frac{\rho \gamma}{2 f(\mathbf{x})} \beta^{2}+\frac{\beta^{2}}{2(1-\beta)}
$$

For $\beta \leq 1 / 2$, the above quantity is less than

$$
-\beta+\left(2+\frac{\rho \gamma}{f(\mathbf{x})}\right) \beta^{2} / 2
$$

Thus, one can choose β to minimize the quantity at

$$
\beta=\frac{1}{2+\frac{\rho \gamma}{f(\mathbf{x})}} \leq 1 / 2
$$

so that

$$
\phi\left(\mathbf{x}^{+}\right)-\phi(\mathbf{x}) \leq \frac{-f(\mathbf{x})}{2(f(\mathbf{x})+2 \rho \gamma)}
$$

One can see that the larger value of $f(\mathbf{x})$, the greater reduction of the potential function.
Starting from $x^{0}=\frac{1}{n} e$, we iteratively generate $x^{k}, k=1, \ldots$, such that

$$
\phi\left(\mathrm{x}^{k+1}\right)-\phi\left(\mathrm{x}^{k}\right) \leq \frac{-f\left(\mathrm{x}^{k}\right)}{2\left(f\left(\mathrm{x}^{k}\right)+2 \rho \gamma\right)} \leq \frac{-f\left(\mathrm{x}^{k}\right)}{2\left(f\left(\mathrm{x}^{0}\right)+2 \rho \gamma\right)} \leq \frac{-f\left(\mathrm{x}^{k}\right)}{4 \max \left\{f\left(\mathrm{x}^{0}\right), 2 \rho \gamma\right\}}
$$

The second inequality is due to $f\left(\mathbf{x}^{k}\right)<f\left(\mathbf{x}^{0}\right)$ from $\phi\left(\mathbf{x}^{k}\right)<\phi\left(\mathbf{x}^{0}\right)$ for all $k \geq 1$ and \mathbf{x}^{0} is the analytic center of the simplex.

Thus, if $\frac{f\left(\mathbf{x}^{k}\right)}{f\left(\mathbf{x}^{0}\right)} \geq \epsilon$ for $1 \leq k \leq K$, we must have

$$
\phi\left(\mathbf{x}^{0}\right)-\phi\left(\mathbf{x}^{K}\right) \leq \rho \ln \left(\frac{1}{\epsilon}\right)
$$

so that

$$
\sum_{k=1}^{K} \frac{f\left(\mathbf{x}^{k}\right)}{4 \max \left\{f\left(\mathbf{x}^{0}\right), 2 \rho \gamma\right\}} \leq \rho \ln \left(\frac{1}{\epsilon}\right)
$$

or

$$
K \epsilon f\left(\mathbf{x}^{0}\right) \leq 4 \max \left\{f\left(\mathbf{x}^{0}\right), 2 \rho \gamma\right\} \rho \ln \left(\frac{1}{\epsilon}\right) .
$$

Note that $\rho=n+\sqrt{n} \leq 2 n$. We conclude
Theorem 3. The steepest descent potential reduction algorithm generates $a \mathbf{x}^{k}$ with $f\left(\mathbf{x}^{k}\right) / f\left(\mathbf{x}^{0}\right) \leq \epsilon$ in no more than

$$
4(n+\sqrt{n}) \frac{\max \left\{1,2(n+\sqrt{n}) \gamma / f\left(\mathbf{x}^{0}\right)\right\}}{\epsilon} \ln \left(\frac{1}{\epsilon}\right)
$$

steps.

3 Extension, Implementation and Possible Further Analysis

Question 1: Develop a similar analysis for solving

$$
\begin{array}{cc}
\text { Minimize } & f(\mathbf{x}) \\
\text { Subject To } & 0 \leq x_{j} \leq 2, \forall j=1, \ldots, n, \tag{3}
\end{array}
$$

where we start $\mathbf{x}^{0}=\mathbf{e}$, the analytic center of the BOX constraint.
Question 2: Implement the algorithm and perform numerical tests to solve for

$$
f(\mathbf{x})=\frac{1}{2}\|A \mathbf{x}\|^{2}
$$

either in (1), or (3), or both.
Question 3: Implement the algorithm and perform numerical tests to solve for

$$
f(\mathbf{x})=\frac{1}{2}\left\|\left(A A^{T}\right)^{-1 / 2} A \mathbf{x}\right\|^{2}
$$

and compare the performance with that in Question 2. This can be viewed as one-time preconditioning.

Question 4: Test your implementation on homogeneous and self LP models for various linear programs (feasible or infeasible), where you may eliminate free variables \mathbf{y} from the formulation.

4 Extension to MDP

Consider the MDP problem

$$
\begin{aligned}
\operatorname{maximize}_{\mathbf{y}} & \sum_{i=1}^{m} y_{i} \\
\text { subject to } & y_{1}-\gamma \mathbf{p}_{j}^{T} \mathbf{y}
\end{aligned} \leq c_{j}, j \in \mathcal{A}_{1}
$$

One can construct a potential/barrier function for a small fixed μ as

$$
b_{\mu}(\mathbf{y})=-\mathbf{e}^{T} \mathbf{y}-\mu \sum_{j} \log \left(c_{j}-y_{i}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}\right),
$$

or

$$
\psi(\mathbf{y})=\rho \log \left(z-\mathbf{e}^{T} \mathbf{y}\right)-\sum_{j} \log \left(c_{j}-y_{i}+\gamma \mathbf{p}_{j}^{T} \mathbf{y}\right)
$$

where $\rho \geq n$ and z is a upper bound on the maximal value of the MDP problem..
Question 5: The problem becomes a unconstrained problem when start $\mathbf{y}^{0}=-\Delta \mathbf{e}$ (in the interior of the feasible region) for a big enough Δ. You may apply the (stochastic) steepest descent method, the conjugate gradient method, the BFGS method, or any deep-learning method, etc, and do numerical experiments. The stochastic gradient would be sample some log terms in the summation and sum up their gradient vectors.

References

[1] C. C. Gonzaga, Polynomial affine algorithms for linear programming, Math. Programming 49 (1990) 7-21.
[2] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984) 373-395.
[3] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM J. Optimization, 2(4):575-601, 1992.
[4] M. J. Todd and Y. Ye, A centered projective algorithm for linear programming, Math. Oper. Res. 15 (1990) 508-529.
[5] Y. Ye, M. J. Todd, and S. Mizuno, An $O(\sqrt{n} L)$ - iteration homogeneous and self-dual linear programming algorithm, Math. Oper. Res. 19 (1994) 53-67.
[6] Y. Ye, An $O\left(n^{3} L\right)$ potential reduction algorithm for linear programming, Math. Programming 50 (1991) 239-258.
[7] Y. Ye, On the complexity of approximating a KKT point of quadratic programming, Math. Programming 80 (1998) 195-211.

