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1 Convex optimization over the simplex constraint

We consider the following optimization problem over the simplex:
Minimize f(x) )
Subject To e’x=mn; x>0,
where e is the vector of all ones. This problem is to minimize a nonlinear function with a Simplex constraint.
Such a problem in considered in [7], where function f(x) does not need to be convex and a FPTAS algorithm

was developed for computing an approximate KKT point of general quadratic programming. The following

algorithm and analysis resemble those in [7].

We assume that f(x) is a convex function in x € R™ and f(x*) = 0 where x* is a minimizer of the

problem. Furthermore, we make a standard Lipschitz assumption such that
v
flx+d) = f(x) < V) d+ o [d],

where positive 7y is the Lipschitz parameter. Note that any homogeneous linear feasibility problem, e.g., the
canonical Karmarkar form in [2]:
Ax = 0;
el'x =n;
x > 0.
1

can be formulated as the model with f(x) = 1|/ Ax||? and v as the half of the largest eigenvalue of matrix

2
AT A.

Furthermore, any linear programming problem in the standard form and its dual

Minimize c’x Maximize bTy

Subject to Ax =b; x > 0; Subject to ATy +s=c;s>0



can be represented as a homogeneous linear feasibility problem (Ye et al. [5]):
Ax — bt = 0;
—ATy —s+cr =0;
bTy —c'x — Kk =0;
e’x+els+7+r=2n+2;
(x,8,7,k) > 0.
We consider the potential function (e.g., see [2, 4, 1, 6])
o(x) = pIn(f(x)) = Y _In(zy),
J
(alternatively, one may consider barrier function b, (x) = f(x) — pu3_; In(z;) for a small fixed 1)

0

where p > n over the simplex. Clearly, if we start from x” = e, the analytic center of the simplex, and

generate a sequence of points x¥, k = 1, ...,, whose potential value is strictly decreased, then when

¢(x") = ¢(x°) < —pIn(1/e),
we must have
pIn(f(x")) — pIn(f(x°)) < —pln(1/e)

or

This is because on the simplex

J

Zln(z?) < Zln(x?),h’k =1,....

We now describe a first order steepest descent potential reduction algorithm in the next section.

2 Steepest-Descent Potential Reduction and Complexity Analysis

Note that the gradient vector of the potential function of x > 0 is

=P x) — X le.
Vo(x) = 75 V) - X e

where in this note X denotes the diagonal matrix whose diagonal entries are elements of vector x.
The following lemma is well known in the literature of interior-point algorithms ([2, 1, 6]):

Lemma 1. Let x > 0 and | X~'d|| < 8 < 1. Then
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Lemma 2. For any x > 0 and X # x*, a matriz A € R™*™ with Ax = Ax*, and a vector A € R™, consider

vector
p(x) = X (Vé(x) — ATX).
Then,
P[> 1.
Proof. First,

If any entry of (Vf(x) — %AT;\) is equal or less than 0, then ||p(x)|| > ||p(x)|l > 1. On the other hand,
_ AT
if (Vf(x) — %AT)\) > 0, we have (Vf(x) — @AT/Q x* > 0. Then, from convexity and Ax = Ax*,

Fx') = f(%) = V)T (x" — %) = (v F(x) JCEOX)ATA) (x* — %),

Thus, from f(x*) =0
x X 7f(x) TY TX
109 < (V160 - 2a73)

Furthermore,
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The above quadratic function of z has the minimizer at z = 1 if p > n, so that
1 1
—(pz—n)*>—(p—n)*>1
n n
for p > n++/n. O
For any given x > 0 in the simplex and any d with e’d = 0,

Foc+d) = £(x) < VF)Td+ Z[ld]” < V)T + 2| XXd|? < VF(0)Td+ 2|1 X d|?,



where the last inequality is due to || X|| < 1. Let [ X~ !d|| =8 <1 and x* =x+d = X(e+ X~!d) > 0.

Then, from Lemma 1

p(xT) —¢p(x) <pln (1 + vf(x)Td;(,%)HXAdHQ) —eTX1d+ 42(15; )
Vi) Td+21x'd)? Ty —1 B>
=p ey —e X7 d+ 50

_ 82
= Vo) d + 5755 + zi=gy-
The first order steepest descent potential reduction algorithm would update x by solving
Minimize Vo(x)Td
Subject to efd =0, | X~1d| < B;

or

Minimize Vo(x)TXd
Subject to e’ Xd' =0, ||d’|| < B;

where parameter 5 < 1 is yet to be determined.

Let the scaled gradient projection vector

() = (1~ [ Xee X ) X0 = X (15 (V10 ~ e Ax) ) ~ e,

f(x)
where
T v2
o LT 19
Then the minimizer of problem (2) would be
B
d=—- Xp(x
TG PO
and
B
v Td -~ 2 — _ -8,
o(x) el Ip(x)l Blp(x)[| < -8

since ||p(x)]| > 1 based on Lemma 2.

Thus,
62
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Py
2f(x)

P(x") — p(x) < =B+

For 8 < 1/2, the above quantity is less than

B+ (2 + f’a)> 32/2.

2
B+ 3

Thus, one can choose § to minimize the quantity at

so that



One can see that the larger value of f(x), the greater reduction of the potential function.

0= %e, we iteratively generate ¥, k =1, ..., such that

NN i) B —f(x¥)
2(f(x%) +2py) = 2(f(x°) +2pv) ~ 4max{f(x°),2p7}

The second inequality is due to f(x*) < f(x°) from ¢(x*) < ¢(x°) for all k£ > 1 and x° is the analytic center

Starting from x

Pp(x") — p(xF) <

of the simplex.

Thus, if % > e for 1 <k < K, we must have

so that
K

Xk
Pt S <o)

Pt 4max{f(x9),2py €

or
Kef(") < dmax{f(x), 207} pIn(2).

Note that p = n + y/n < 2n. We conclude

Theorem 3. The steepest descent potential reduction algorithm generates a x* with f(x*)/f(x°) < € in no

more than

st /) max{1,2(n —&-Ex/ﬁ)’Y/f(xo)} ln(l)

€

steps.

3 Extension, Implementation and Possible Further Analysis

Question 1: Develop a similar analysis for solving

Minimize f(x)

Subject To 0<z; <2, Vj=1,..,n,
where we start x? = e, the analytic center of the BOX constraint.
Question 2: Implement the algorithm and perform numerical tests to solve for
1 2
760 = 5l14x]
either in (1), or (3), or both.

Question 3: Implement the algorithm and perform numerical tests to solve for

Fx) = SI(AAT) 2 Ax]?,



and compare the performance with that in Question 2. This can be viewed as one-time preconditioning.

Question 4: Test your implementation on homogeneous and self LP models for various linear programs

(feasible or infeasible), where you may eliminate free variables y from the formulation.

4 Extension to MDP

Consider the MDP problem

. . m
maximizey, Yy,

IN

subject to  y; — 'yp;fy ¢, j€A

IN

Yi — 7P,y cj, j € A;

Ym —P]Y < ¢, §E A

One can construct a potential/barrier function for a small fixed p as

buly) = —e"y — 1y log(c; — yi + 7P ¥),

J
or
P(y) = plog(z —e"y) = > log(c; — yi +7p] y)
J

where p > n and z is a upper bound on the maximal value of the MDP problem..

Question 5: The problem becomes a unconstrained problem when start y® = —Ae (in the interior of the
feasible region) for a big enough A. You may apply the (stochastic) steepest descent method, the conjugate
gradient method, the BFGS method, or any deep-learning method, etc, and do numerical experiments. The

stochastic gradient would be sample some log terms in the summation and sum up their gradient vectors.
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