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1 Convex optimization over the simplex constraint

We consider the following optimization problem over the simplex:

Minimize f(x)

Subject To eTx = n; x ≥ 0,
(1)

where e is the vector of all ones. This problem is to minimize a nonlinear function with a Simplex constraint.

Such a problem in considered in [7], where function f(x) does not need to be convex and a FPTAS algorithm

was developed for computing an approximate KKT point of general quadratic programming. The following

algorithm and analysis resemble those in [7].

We assume that f(x) is a convex function in x ∈ Rn and f(x∗) = 0 where x∗ is a minimizer of the

problem. Furthermore, we make a standard Lipschitz assumption such that

f(x + d)− f(x) ≤ ∇f(x)Td +
γ

2
‖d‖2,

where positive γ is the Lipschitz parameter. Note that any homogeneous linear feasibility problem, e.g., the

canonical Karmarkar form in [2]:

Ax = 0;

eTx = n;

x ≥ 0.

can be formulated as the model with f(x) = 1
2‖Ax‖

2 and γ as the half of the largest eigenvalue of matrix

ATA.

Furthermore, any linear programming problem in the standard form and its dual

Minimize cTx

Subject to Ax = b; x ≥ 0;

Maximize bTy

Subject to ATy + s = c; s ≥ 0
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can be represented as a homogeneous linear feasibility problem (Ye et al. [5]):

Ax− bτ = 0;

−ATy − s + cτ = 0;

bTy − cTx− κ = 0;

eTx + eT s + τ + κ = 2n+ 2;

(x, s, τ, κ) ≥ 0.

We consider the potential function (e.g., see [2, 4, 1, 6])

φ(x) = ρ ln(f(x))−
∑
j

ln(xj),

(alternatively, one may consider barrier function bµ(x) = f(x)− µ
∑
j ln(xj) for a small fixed µ)

where ρ ≥ n over the simplex. Clearly, if we start from x0 = e, the analytic center of the simplex, and

generate a sequence of points xk, k = 1, ...,, whose potential value is strictly decreased, then when

φ(xk)− φ(x0) ≤ −ρ ln(1/ε),

we must have

ρ ln(f(xk))− ρ ln(f(x0)) ≤ −ρ ln(1/ε)

or
f(xk)

f(x0)
≤ ε.

This is because on the simplex ∑
j

ln(xkj ) ≤
∑
j

ln(x0
j ),∀k = 1, ....

We now describe a first order steepest descent potential reduction algorithm in the next section.

2 Steepest-Descent Potential Reduction and Complexity Analysis

Note that the gradient vector of the potential function of x > 0 is

∇φ(x) =
ρ

f(x)
∇f(x)−X−1e.

where in this note X denotes the diagonal matrix whose diagonal entries are elements of vector x.

The following lemma is well known in the literature of interior-point algorithms ([2, 1, 6]):

Lemma 1. Let x > 0 and ‖X−1d‖ ≤ β < 1. Then

−
∑
j

ln(xj + dj) +
∑
j

ln(xj) ≤ −eTX−1d +
β2

2(1− β)
.
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Lemma 2. For any x > 0 and x 6= x∗, a matrix A ∈ Rm×n with Ax = Ax∗, and a vector λ̄ ∈ Rm, consider

vector

p(x) = X
(
∇φ(x)−AT λ̄

)
.

Then,

‖p(x)‖ ≥ 1.

Proof. First,

p(x) = X

(
ρ

f(x)
∇f(x)−X−1e−AT λ̄

)
=

ρ

f(x)
X

(
∇f(x)− f(x)

ρ
AT λ̄

)
− e.

If any entry of (∇f(x)− f(x)
ρ AT λ̄) is equal or less than 0, then ‖p(x)‖ ≥ ‖p(x)‖∞ ≥ 1. On the other hand,

if
(
∇f(x)− f(x)

ρ AT λ̄
)
> 0, we have

(
∇f(x)− f(x)

ρ AT λ̄
)T

x∗ ≥ 0. Then, from convexity and Ax = Ax∗,

f(x∗)− f(x) ≥ ∇f(x)T (x∗ − x) =

(
∇f(x)− f(x)

ρ
AT λ̄

)T
(x∗ − x).

Thus, from f(x∗) = 0

f(x) ≤
(
∇f(x)− f(x)

ρ
AT λ̄

)T
x.

Furthermore,

‖p(x)‖2 = ρ2

f(x)2 ‖X
(
∇f(x)− f(x)

ρ AT λ̄
)
‖2 − 2 ρ

f(x)

(
∇f(x)− f(x)

ρ AT λ̄
)T

x + n

≥ ρ2

n·f(x)2 ‖X
(
∇f(x)− f(x)

ρ AT λ̄
)
‖21 − 2 ρ

f(x)

(
∇f(x)− f(x)

ρ AT λ̄
)T

x + n

≥ ρ2

n

(
(∇f(x)− f(x)

ρ AT λ̄)
T
x

f(x)

)2

− 2ρ

(
(∇f(x)− f(x)

ρ AT λ̄)
T
x

f(x)

)
+ n

= (ρz)2

n − 2ρz + n = 1
n (ρz − n)2,

where

z =

(
∇f(x)− f(x)

ρ AT λ̄
)T

x

f(x)
≥ 1.

The above quadratic function of z has the minimizer at z = 1 if ρ ≥ n, so that

1

n
(ρz − n)2 ≥ 1

n
(ρ− n)2 ≥ 1

for ρ ≥ n+
√
n.

For any given x > 0 in the simplex and any d with eTd = 0,

f(x + d)− f(x) ≤ ∇f(x)Td +
γ

2
‖d‖2 ≤ ∇f(x)Td +

γ

2
‖XX−1d‖2 ≤ ∇f(x)Td +

γ

2
‖X−1d‖2,
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where the last inequality is due to ‖X‖ ≤ 1. Let ‖X−1d‖ = β < 1 and x+ = x + d = X(e + X−1d) > 0.

Then, from Lemma 1

φ(x+)− φ(x) ≤ ρ ln
(

1 +
∇f(x)Td+ γ

2 ‖X
−1d‖2

f(x)

)
− eTX−1d + β2

2(1−β)

≤ ρ∇f(x)Td+ γ
2 ‖X

−1d‖2

f(x) − eTX−1d + β2

2(1−β)

= ∇φ(x)Td + ργ
2f(x)β

2 + β2

2(1−β) .

The first order steepest descent potential reduction algorithm would update x by solving

Minimize ∇φ(x)Td

Subject to eTd = 0, ‖X−1d‖ ≤ β;
(2)

or

Minimize ∇φ(x)TXd′

Subject to eTXd′ = 0, ‖d′‖ ≤ β;

where parameter β < 1 is yet to be determined.

Let the scaled gradient projection vector

p(x) =

(
I − 1

‖x‖2
XeeTX

)
X∇φ(x) = X

(
ρ

f(x)
(∇f(x)− e · λ(x))

)
− e,

where

λ(x) =
eTX2∇φ(x) · f(x)

‖x‖2 · ρ
.

Then the minimizer of problem (2) would be

d = − β

‖p(x)‖
Xp(x),

and

∇φ(x)Td = − β

‖p(x)‖
‖p(x)‖2 = −β‖p(x)‖ ≤ −β,

since ‖p(x)‖ ≥ 1 based on Lemma 2.

Thus,

φ(x+)− φ(x) ≤ −β +
ργ

2f(x)
β2 +

β2

2(1− β)

For β ≤ 1/2, the above quantity is less than

−β +

(
2 +

ργ

f(x)

)
β2/2.

Thus, one can choose β to minimize the quantity at

β =
1

2 + ργ
f(x)

≤ 1/2

so that

φ(x+)− φ(x) ≤ −f(x)

2(f(x) + 2ργ)
.
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One can see that the larger value of f(x), the greater reduction of the potential function.

Starting from x0 = 1
ne, we iteratively generate xk, k = 1, ..., such that

φ(xk+1)− φ(xk) ≤ −f(xk)

2(f(xk) + 2ργ)
≤ −f(xk)

2(f(x0) + 2ργ)
≤ −f(xk)

4 max{f(x0), 2ργ}
.

The second inequality is due to f(xk) < f(x0) from φ(xk) < φ(x0) for all k ≥ 1 and x0 is the analytic center

of the simplex.

Thus, if f(xk)
f(x0) ≥ ε for 1 ≤ k ≤ K, we must have

φ(x0)− φ(xK) ≤ ρ ln(
1

ε
),

so that
K∑
k=1

f(xk)

4 max{f(x0), 2ργ}
≤ ρ ln(

1

ε
)

or

Kεf(x0) ≤ 4 max{f(x0), 2ργ}ρ ln(
1

ε
).

Note that ρ = n+
√
n ≤ 2n. We conclude

Theorem 3. The steepest descent potential reduction algorithm generates a xk with f(xk)/f(x0) ≤ ε in no

more than

4(n+
√
n)

max{1, 2(n+
√
n)γ/f(x0)}

ε
ln(

1

ε
)

steps.

3 Extension, Implementation and Possible Further Analysis

Question 1: Develop a similar analysis for solving

Minimize f(x)

Subject To 0 ≤ xj ≤ 2, ∀j = 1, ..., n,
(3)

where we start x0 = e, the analytic center of the BOX constraint.

Question 2: Implement the algorithm and perform numerical tests to solve for

f(x) =
1

2
‖Ax‖2

either in (1), or (3), or both.

Question 3: Implement the algorithm and perform numerical tests to solve for

f(x) =
1

2
‖(AAT )−1/2Ax‖2,

5



and compare the performance with that in Question 2. This can be viewed as one-time preconditioning.

Question 4: Test your implementation on homogeneous and self LP models for various linear programs

(feasible or infeasible), where you may eliminate free variables y from the formulation.

4 Extension to MDP

Consider the MDP problem

maximizey
∑m
i=1 yi

subject to y1 − γpTj y ≤ cj , j ∈ A1

...

yi − γpTj y ≤ cj , j ∈ Ai
...

ym − γpTj y ≤ cj , j ∈ Am.

One can construct a potential/barrier function for a small fixed µ as

bµ(y) = −eTy − µ
∑
j

log(cj − yi + γpTj y),

or

ψ(y) = ρ log(z − eTy)−
∑
j

log(cj − yi + γpTj y)

where ρ ≥ n and z is a upper bound on the maximal value of the MDP problem..

Question 5: The problem becomes a unconstrained problem when start y0 = −∆e (in the interior of the

feasible region) for a big enough ∆. You may apply the (stochastic) steepest descent method, the conjugate

gradient method, the BFGS method, or any deep-learning method, etc, and do numerical experiments. The

stochastic gradient would be sample some log terms in the summation and sum up their gradient vectors.
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