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Abstract

The FENE-P model is used in a channel flow to investigate turbulent drag reduction.
In opposite to previous works, a RANS calculation is performed. Different simple closure
models and a wide range of parameters are tested. This investigation shows that these
simple models are not accurate and cannot describe qualitatively the physics of drag
reduction. Although these models fail to describe the polymer stress term, it is suspected
that its accurate modelization is not enough and that the turbulence model needs also
to be adapted since the action of the polymers is very localized and three dimensional.



1 Introduction

It has been experimentally shown for more than 50 years [?] that dilute solutions of long
polymer chains can reduce the drag in a turbulent flow. However, an exact description of the
mechanisms has still not been proposed. Many theories [?, ?, ?] have been developed. Some
models have successfully predicted drag reduction [?, ?, ?, ?] and even reached the Virk
[?] or maximum drag reduction asymptote. These simulations used the so-called FENE-P
model in conjunction with DNS. The FENE-P model is an approximation of the FENE
dumbbell, which represents the polymer as an entropic spring connecting two beads for the
hydrodynamic forces. It envisages the polymers and the Newtonian fluid as a continuum.
The equations are the usual Navier-Stokes equations slightly modified by an extra-term
which accounts for the stress created by the polymers.

The goal of this project is to implement this system of equations in Fluent and perform
a RANS simulation. It should investigate different closure models and the influence of the
parameters.

2 Basic equations

The domain used is two-dimensional with two walls at the upper and lower boundaries. In
the z-direction, the domain is periodic. All length are made dimensionless using the half
height of the channel. The extent of the domain in the streamwise direction is then unity.
Fig. 1 shows the mesh used.

Figure 1: Mesh used for the calculation;
streamwise direction from left to right,
walls at the top and bottom

If the extra-stress created by the polymers is defined by T;;, the modified Navier-Stokes



equations are
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where 3 represents the ratio of solvent 75 to the total viscosity 7;, and Re is the Reynolds
number defined with the half height of the channel H, the total viscosity n; and the bulk
velocity Upyr, of the flow. The total viscosity is the sum of the solvant viscosity 7s and the
polymer viscosity 7,. The polymeric stress tensor Tj; is related to a conformation tensor
Ci;
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where We is the Weissenberg number which is the ratio of the characteristic time scale of
the flow to the characteristic time scale of the polymer given by its relaxation time. The
FENE and FENE-P models are improved versions of the Oldroyd-B, where a maximum
extensibility has been introduced to bound the extension of the spring. In the above equa-
tion, the trace of the conformation tensor Cj; cannot extend over the parameter L?. The
conformation tensor is obtained by solving an evolution equation
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where the last term on the lefthand side corresponds to an artificial diffusion characterized
by the parameter s to guarantee the numerical stability of the scheme.

We can now take the average of the previous equations to get the Reynolds average
equations
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where the different variables have been split into their mean and the fluctuations from this
mean
UZ = UZ + Uj (9)
P=P+p (10)
Cij = Cij + cij (11)
Tyj =Ty + 75 (12)



As expected, these equations are not closed. A model for the different new terms is
necessary, namely the two last terms in Eq. 8, the average of the polymeric stress in
Eq. 6 and the term containing the mean value of a fraction in Eq. 7 and 8. It is also
important to notice that the Reynolds stress is also influenced by the polymers and should
be adapted accordingly. The modeling of turbulence itself is done by using the standard
Spalart-Allmaras model.

Three strategies of closure are investigated in this project. Due to a lack of time, only
simple models will be tested and presented. Moreover, a wide range of parameters have
been used to investigate their influence on the flow. Each solution is then compared to the
Newtonian case which serves as reference. The Newtonian calculation is first presented,
then the different closure approximations are discussed.

3 Newtonian flow

The RANS simulation of the channel flow is performed at two different Reynolds number
to validate the turbuelent model. Re = 5000 and Re = 10000 are used in this case. Fig.
2 shows the velocity profile non-dimensionalized by u, as function of y* for both cases. It
can be seen that both curves collapse on eachother. For all the calculations, the drag at the
wall is calculated by using the pressure gradient, since all simulations are done at fixed mass
flow. At Re = 5000, we get 7, = 0.003542 and h™ = 297.6, whereas at Re = 10000, the
stress at the wall is 7, = 0.003025 and h* = 275.0. The increase of the Reynolds number
was performed by decreasing the viscosity by a factor of 2. These results are consistent with
DNS data, showing that the turbulence model used is accurate enough for the Newtonian
flow.

4 First model

As mentioned before, the turbulence is described by the Spalart-Allmaras model. The ad-
ditional source term corresponding to the mean polymer stress (see Eq. 7) is approximated
by
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and C’_ZJ is calculated from Eq. 8 neglecting the terms on the right-hand side and replacing
again the mean of the fraction by the fraction of the means
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The artificial diffusivity x was set to 0.0001 for all the runs in order to stabilize the numerical
computation. Also the factor in front of the polymeric stress term in Eq. 6 is modified by
adding the eddy viscosity ur to the total viscosity 7; giving (1 — f) (ﬁ + ”TT) This is
motivated by the analogy with the Reynolds stress where a extra turbulent diffusion is
added.

Different values of the concentration ratio S and of the Weissenberg number We have
been simulated. In each case, the extensibility L was set to 60, which is a realistic value
for relatively large polymers, and the Reynolds number to Re = 5000. Fig. 3 and 4 show
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Figure 2: Velocity profile for the Newtonian case using the Spalart-
Allmaras model; x: Re = 5000, o: Re = 10000

the results. It must be reminded that the pressure gradient in the Newtonian case for the
same Reynolds number was dP/dz = 0.003542 (see section 3). Therefore this model does
not give any drag reduction but in contrary a drag increase, since the pressure gradient has
increased. Moreover, this drag increase is greater for small Weissenberg numbers and small
viscosity ratios. For a really small concentration of polymers (large ) the drag is almost
the same as for the Newtonian case.

Since the turbulence model used here is a standard Spalart-Allmaras model, the only
contribution of the polymers come from T;;. Fig. 5 shows the polymeric stress calculated
with this model and Fig. 6 shows the velocity profile. It is interesting to notice that only one
component of the stress, namely T, is non-zero in the streamwise direction. The stress has
its maximum at the wall and decrease rapidly away from the wall. Results from DNS (see
Fig. 10) show however that the maximum stress should be located at a small distance from
the wall and not directly at the wall. This qualitative behaviour could explain the increase
in drag found with this model. The velocity profile does not show either the expected
shift up observed experimentally and numerically in drag reduced flow. All these results
demonstrate that the model is not accurate.

5 Second model

The second approximation strategy is similar to the first model but replace the last term
on the right-hand side of Eq. 8 by a conformation strain production term A;; instead of
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Figure 3: Variation of the drag as func-
tion of the viscosity parameter 8 for a
fixed Weissenberg number We = 2

Figure 4: Variation of the drag as func-
tion of the Weissenberg number We for a
fixed viscosity ratio 8 = 0.9
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Figure 5: Polymer stress 74, for 8 =
0.999 and We = 50

Figure 6: Velocity profile; o: 8 = 0.999
and We = 50, x: Newtonian (8 = 1)

neglecting it
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This production term is approximated by
Aij = CroweHT? (16)

The value of C}y is however unknown. Different values have been tested but all simulations
gave even higher drag than the previous model. For instance at a § = 0.9 and We =
10, a value C,9 = 15 leads to a pressure gradient dP/dz = 0.004905, whereas Cro = 0
gives dP/dx = 0.004334. This seems to indicate that it is not the best way to model the
conformation tensor Cj;. Fig. 7 shows the same qualitative behaviour as the previous
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Figure 8: Velocity profile; o: g = 0.9,
We = 10 and C,¢ = 15, x: Newtonian
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Figure 7: Polymer stress 7, for 8 = 0.9,
We =10 and C,g = 15

model. It tends to show that the addition of the conformation strain production term does
not improve the results. Moreover, the shift of the velocity profile is down and not up.

6 No closure

Finally, the simplest way to close the problem is to neglect all the unknown terms. Again,
this method is similar to the first model but without the modification of the factor in
front of the polymer stress term. For 8 = 0.9 and We = 50 the pressure gradient is
dP/dz = 0.003509 which is smaller than the Newtonian case. However, the velocity profile
is still not shifted up as shown in Fig. 9. This prooves than the physics is still not described
accurately, even if a small drag reduction is observed. The stress 7., is similar to that
shown previously.
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Figure 9: Velocity profile; o:8 = 0.9,
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7 Discussion

The results shown in the previous sections demonstrate that the chosen strategy for the
closure of the equations is not satisfactory. For almost all cases a drag increase has been
observed instead of the expected drag reduction. The shape of the velocity profile and
especially the log-law region are not accurately described. None of the calculations has
shown the shift of the log-law region and its slope change. Different explanations can
be attempted. The Reynolds average Navier-Stokes equation (Eq. 6) contains two terms
which need closure, namely the Reynolds stress and the polymeric stress. Depending on
their relative importance, one or the other or both are the source of the discrepancies. So
far only the polymeric term has been investigated but the Reynolds stress is also influenced
by the polymers. Especially since the polymers act locally in changing the turbulence.
Therefore the Spalart-Allmaras model or any other model used for turbulence needs to be
adapted accordingly. As shown in the previous figures, the polymeric stress itself is not
either well described so that improvement is also needed in the closure of the polymeric
stress term.
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Figure 10: Polymeric and Reynolds stresses
as function of the distance to the wall for dif-
ferent drag regimes (DNS simulation)

A simple way to investigate this problem is to use DNS results to validate the approxi-
mations. For instance, the polymeric stress given by a DNS simulation (see Fig. 10) could
be used, so that the only term which is not exact is the Reynolds stress. It allows so a good
quantification of the relative importance of the two terms. Similarly, the Reynolds stress
given by the DNS could be used to check the accuracy of the polymeric stress.

8 Conclusion

The RANS simulation of a dilute polymer solution in a channel flow has been investigated.
The polymers were modeled by the FENE-P equations. Different simple approximation
have been tested as well as different parameters. It was shown that none of the models
could describe quantitatively the physics and the drag reduction. A protocole has been
proposed in order to investigate in a more systematic manner the influence of the different



terms. This approach was based on DNS results in order to localize and simplify the different
closure problems. The subject is however complex and much more time would be required
in order to develop a clean and accurate closure.

9 Appendix: User-defined function

The following user-defined function was used for the different calculations. Depending on
the model, Cy¢ and/or the eddy-viscosity were set to zero.

#include "udf.h"

[ ———m */
/* model constants */
[k—— */

#define fenep_L 60.0
#define fenep_e 0.9
#define fenep_W 10.0
#define rho 1.0
#define mu 0.0002
#define C_x0 15.0

enum

ci1,

c22,

c12,

FF,

Ti1,

T22,

T12,

N_REQUIRED_UDS
};

DEFINE_PROPERTY(density, c, t)
{

return rho;

}



DEFINE_PROPERTY (viscosity, c, t)

{

return (mu/rho)*fenep_e;
}
[ - ——— — . . .. . . . .— . — . - —— —— ——-———-.—-.—_ . . —,—-( € —_-F 7 — */
/* Source terms in the C_ij equations and in the momentum */
[ —mmm e —————————————————————— - */

DEFINE_SOURCE(c11_source, c, t, dS, eqn)
{
dS[egqn] = -(1./fenep_W)*C_UDSI(c,t,FF);
return 2.*C_UDSI(c,t,C12)*C_DUDY(c,t)-(1./fenep_W)*
(Cc_upSi(c,t,FF)*C_UDSI(c,t,C11)-1.)+C_rO*fenep_W*C_MU_T(c,t)/3.0;

DEFINE_SOURCE(c22_source, c, t, dS, eqn)

{
dS[egqn] = -(1./fenep_W)*C_UDSI(c,t,FF);
return -(1./fenep_W)*(C_UDSI(c,t,FF)*C_UDSI(c,t,C22)-1.)+
C_rO*fenep_W+C_MU_T(c,t)/3.0;

}

DEFINE_SOURCE(c12_source, c, t, dS, eqn)

{
dS[egqn] = -(1./fenep_W)*C_UDSI(c,t,FF);
return C_UDSI(c,t,C22)*C_DUDY(c,t)-(1./fenep_W)=*
C_UDSI(c,t,FF)*C_UDSI(c,t,C12);

}
DEFINE_SOURCE (u_source, ¢, t, dS, eqn)
{

real us;

dS[eqn] = 0.;

us = (1.-fenep_e)*((mu+C_MU_T(c,t))/rho)*(C_UDSI_G(c,t,T11) [0]+
C_UDSI_G(c,t,T12)[1]1);
return us;

}
DEFINE_SOURCE(v_source, ¢, t, dS, eqn)
{

real vs;

dSleqn] = 0.;

vs = (1.-fenep_e)*((mu+C_MU_T(c,t))/rho)*(C_UDSI_G(c,t,T12) [0]+
C_UDSI_G(c,t,T22)[1]1);
return vs;
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DEFINE_ADJUST (adjust, domain)

Thread *t;
Thread *tf;
cell_t c;
face_t f;

real 12=fenep_L*fenep_L;

[ mmmm - */
/* clip the C_ij and compute the FF and T_ij */
[R—————— - ————-—-— . . —. — . — —_-. € — */

thread_loop_c (t, domain)
begin_c_loop(c,t)
{
C_UDSI(c,t,C11) MAX(C_UDSI(c,t,C11),1.0e-6);
C_UDSI(c,t,C22) = MAX(C_UDSI(c,t,C22),1.0e-6);
C_UDSI(c,t,C11) MIN(C_UDSI(c,t,C11),0.99*12-C_UDSI(c,t,C22));

Cc_uDpSI(c,t,FF) = 12/(12-C_UDSI(c,t,C11)-C_UDSI(c,t,C22));

C_UDpSI(c,t,T11)
C_UDSI(c,t,T22)
C_UDSI(c,t,T12)
}
end_c_loop(c,t)

(1./fenep_W)*(C_UDSI(c,t,FF)*C_UDSI(c,t,C11)-1.);
(1./fenep_W)*(C_UDSI(c,t,FF)*C_UDSI(c,t,C22)-1.);
(1./fenep_W)*(C_UDSI(c,t,FF)*C_UDSI(c,t,C12) )

b
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