
ME469B/6/GI 1

User Programming & Automation

• What are User Defined Functions
• Introduction to C
• Set-Up C User Routines in Fluent
• Programming in other CFD Commercial Codes
• Automation

Acknowledgement: this handout is partially based on Fluent training material

ME469B/6/GI 2

Introduction to UDF Programming

Why programming in commercial codes?

• The codes are general-purpose but cannot anticipate all needs
• New (physical) models can be developed in a user-friendly environment
• Large number of problems (test-cases) can be addressed with the same implementation

What is a the User Defined Function (UDF)?

• C (Fluent) or FORTRAN (StarCD, CFX) routines programmed by the user linked to
 the solver to perform certain operations:

• initialization
• special boundary condition (i.e. space or time dependent)
• material properties
• source terms
• reaction rates
• postprocessing and reporting
• debugging
• ….

ME469B/6/GI 3

Geometrical Entities - Reminder

2D 3D

Collection of entities are called “zones”

ME469B/6/GI 4

A Simple UDF Example
Specify a Parabolic Velocity Profile at the Inlet

Goal: The UDF (inlet_parab) set the values of the x-velocity component at the cell
faces of the inlet boundary zone

1) Determine the cell-faces belonging to the inlet zone
2) Loop on all those faces
3) Determine the coordinate of the face centroid
4) Specify the x-velocity component

Inlet
zone

ME469B/6/GI 5

Parabolic Velocity Profile:

A Simple UDF Example

function inlet_parab

Definitions

Loop over all the inlet cell faces

Evaluate the face centroid coordinates

The function return the velocity

ME469B/6/GI 6

A Simple UDF Example

Compile/interpret the UDF:

Define → User Defined

Attach the profile to the inlet zone

Define → Boundary Condition

Equivalent to attach the profile from a separate simulation

ME469B/6/GI 7

Solve the equations

Solve → Iterate

Final Result

A Simple UDF Example

ME469B/6/GI 8

C Programming

Typical C function:

ME469B/6/GI 9

C vs. FORTRAN

ME469B/6/GI 10

Basic Programming Rules

Statements MUST end with a semicolon → ;

Comments are placed anywhere in the program between → /* …… */

Statements are grouped by curly brackets → { …… }

Variables defined within the body functions are local
Variables defined outside the body functions are global and can be used by
all the functions that follows

Variables MUST be ALWAYS defined explicitly

Integer/real/double functions have to return a integer/real/double value

C is case sensitive!

ME469B/6/GI 11

Basic Statements

Arithmetic expressions in C look like FORTRAN

a = y + (i-b)/4;

Functions which return values can be used in assignment

a = mycompute(y,i,b);

Functions which do not return values can be called directly

mystuff(a,y,i,b);

Mathematical and various other default functions are available

a = pow(b,2); /* pow(x,y) returns x raised to y */

ME469B/6/GI 12

Data Types and Arrays

Arrays of variables are defined using the notation

Note the brackets are square [] not round ()!!

Note that the arrays ALWAYS start from 0

Standard C types are: Integer, Real, Double, Char

C allows to define additional types

typedef struct list{int id, float x[3], int id_next};

int a[10]; /*define an array of ten integers */

ME469B/6/GI 13

Pointers

A pointer is a variable which contain the address of another variable

Pointers are defined as:

int *a_p; /* pointer to an integer variable */
int a; /* an integer variable */

Set-up a pointer

a = 1;
a_p = &a; /* &a return the address of variable a */

*a_p returns the content of the address pointed by a_p

ME469B/6/GI 14

Operators

Arithmetic Operators Logical Operators

ME469B/6/GI 15

Conditional Statements

if and if-else Example

ME469B/6/GI 16

Loop Procedure

for loops Example

ME469B/6/GI 17

C Preprocessor

It handles Macro substitutions

#define A B
#define my_f(x,y) x+y*3-5

The preprocessor replaces A with B

It also handles file inclusion

#include “udf.h”
#include “math.h”

The files to be included MUST reside in the currect directory

ME469B/6/GI 18

Programming in C

Of course much more than just this….

Additional information are:

http://www.cs.cf.ac.uk/Dave/C/CE.html

Plenty of books:

“The C Programming Language”, Kernighan & Ritchie, 1988

ME469B/6/GI 19

UDF in Commercial CFD Codes

Commercial CFD codes allow the development of User Defined Functions
for various applications. Anyway, the core of the software is closed.

UDF must be compiled and linked to the main code

Most codes provide macros and additional tools to facilitate the use of UDFs

In Fluent there are two options:
Interpreted

The code is executed on a “line-by-line” basis at run time
+ does not need a separate compiler (completely automatic)
- slows down the execution and uses more memory
- somewhat limited in scope

Compiled
A library of UDF is compiled and linked to the main code
Overcomes all the disadvantages reported above

ME469B/6/GI 20

Interpret the UDFs

Define → User Defined → Interpreted

Default stack size might be too small for large arrays!

Display of code translation in assembly
(and eventual compiling errors)

ME469B/6/GI 21

Compile the UDFs

Define → User Defined → Compiled

The library MUST be precompiled in a directory tree

ME469B/6/GI 22

Directory tree for compiled UDFs

my_library

Makefile src lnx86

makefile my_udf.c

2d 3d

makefile my_udf.c libudf.so

makefile my_udf.c libudf.so

Machine dependent
irix6r10
ultra
hp700
…

ME469B/6/GI 23

Makefiles for UDFs

In the directory

/usr/local/Fluent.Inc/fluent6/src

There are two files

akefile2.udf to be copied in the directory my_library
makefile.udf to be copied in the directory my_library/src

The first one does not require modifications.
In the second one two macros MUST be modified

SOURCE = my_udf.c
FLUENT_INC = /usr/local/Fluent.Inc

ME469B/6/GI 24

UDFs in FLUENT

Boundary Conditions
Initial Conditions
Adjust Function
Source Terms
Material Properties
Execute on Demand
User Defined Scalars
User Defined Memory

Pointers to threads
Geometry Macros
Cell and Face Variables
Arithmetic and Trigonometric Functions

Available MACROS

Programming
Tools

ME469B/6/GI 25

Boundary Conditions

The inlet profile specification is based on the macro DEFINE_PROFILE

DEFINE_PROFILE can be used for wall boundary conditions as well
to impose temperature, velocity, shear stress, etc.

It is possible to specify a constant value, a position-dependent or
time-dependent values and to link the values on the boundary to the values
in the internal cells

Note that the BCs are applied to the faces of the cells (face centroids)

x
x

x
BC

Internal
Values

ME469B/6/GI 26

Initial Conditions
The initial condition specification can be performed using the macro DEFINE_INIT

Space-dependent conditions might be imposed

The routine is executed once at the beginning of the solution process

It is attached in the UDFs hooks

Define → User Defined → Function Hooks

ME469B/6/GI 27

Initial Conditions

Note that the difference between the DEFINE_PROFILE and DEFINE_INIT
is that the former performs a loop on the face-centroids belonging to a certain
zone whereas the latter loops on the cell-centroids

Example:

ME469B/6/GI 28

Adjust Function
Similar to the DEFINE_INIT but it is executed every iteration: DEFINE_ADJUST

Can be used for postprocessing, clipping, etc.

It is attached in the UDFs hooks

Define → User Defined → Function Hooks

ME469B/6/GI 29

Source Terms

To add a source term in the equations: DEFINE_SOURCE

Can be used for:
Continuity
Momentum (component by component)
Turbulent quantities
Energy

It is different from the previous macros because it works on a cell-by-cell basis
(no need to perform loops!)

ME469B/6/GI 30

Define → Boundary Conditions → Fluid

Source Terms

Activate source terms

Attach the UDF

ME469B/6/GI 31

Source Terms

In FLUENT the source terms are written in the form

S (φ) = A + B φ

where φ is the dependent variable

A is treated explicitly and B φ is treated implicitly

In the DEFINE_SOURCE both terms A and B have to be specified

ME469B/6/GI 32

Material Properties

To define the properties of the materials : DEFINE_PROPERTIES

Can be used for:
Viscosity
Density
Thermal Conductivity
….

As for the source terms works on a cell-by-cell basis

ME469B/6/GI 33

Material Properties

Define → Material Property

All the available UDFs
Are shown in the menu

ME469B/6/GI 34

Execute on Demand

Define → User Defined → Execute on Demand

To perform operations instantaneously : EXECUTE_ON_DEMAND

It is executed when activated by the user

Can be used for:
Debugging
Postprocessing
….

ME469B/6/GI 35

User Defined Scalar
In addition to the Continuity and Momentum Equations (and Energy)
generic transport equations can be solved (up to 50!)

To include scalars in the calculations

1) Define the number of scalars

Define → User Defined → User Defined Scalars

2) Define the diffusion and source terms in the generic equation

ME469B/6/GI 36

User Defined Scalar

Define → Material Property

When UDS are defined in the material property panel the diffusivity of the
scalars MUST be defined

Note that the default diffusivity for the scalars is constant and equal to 1!

ME469B/6/GI 37

User Defined Scalar

Boundary conditions for the scalars can be defined as

Constant Value
Constant Gradient
User Defined

Define → Boundary Conditions → Wall

ME469B/6/GI 38

User Defined Scalar

The Source terms for the scalars are set using the DEFINE_SOURCE macro
Introduced before

The scalar equations can be further customized

1) Convective terms can be modified using the macro
DEFINE_UDS_FLUX

2) Unsteady term can be modified using the macro
 DEFINE_UDS_UNSTEADY

ME469B/6/GI 39

User Defined Memory

The User Defined Scalars are used to solve additional equations eventually
coupled to the mean flow equations

Sometimes it is useful to define temporary field variables to store and retrieve
values not directly available

UDM are defined:

More efficient storage compared to User Defined Scalars

Define → User Defined → User Defined Memory

ME469B/6/GI 40

I/O in UDF

User Defined Scalars and User Defined Memory are AUTOMATICALLY
Stored in the Fluent Data files

Additional I/O (from and to the Fluent Case and Data files) can be
Accomplished using the macro DEFINE_RW_FILE

Define → User Defined → Function Hooks

ME469B/6/GI 41

Detailed Programming
The macros introduced before are interpreted/compiled and attached to
the various Fluent panels

The detailed programming is based on additional macros that allow to
loop on cells to retrieve field variables, etc.

Loop Macros
Geometry Macros
Field Variable Macros
Control Macros
Arithmetic and Trigonometric Macros

Before looking at the Macros, the Fluent Data structure in introduced

ME469B/6/GI 42

Data Structure

It is based on a hierarchy of structures

Threads (zones) are collection of cells or faces
Domain is a collections of threads

Domain

Thread

Cell

Thread

Face

Thread

Face

ME469B/6/GI 43

Every zone is associated to a single ID (available in the boundary conditions menu)

Threads

Given the ID of a thread the pointer can be retrieved as:

 Thread *tf = Lookup_Thread(domain, ID);

Given the thread pointer the ID of the zone can be retrieved as:

 ID = THREAD_ID(thread);

zone

ID

ME469B/6/GI 44

Loop Macros

ME469B/6/GI 45

cell0
cell1

x

face

Cell-face connectivity

When looping on faces the surrounding cells can be accessed using the macros:

cell0_thread = F_C0_THREAD(face,thread)
cell1_thread = F_C1_THREAD(face,thread)
cell0_id = F_C0(face,thread)
cell1_id = F_C1(face,thread)

When looping on cells adjacent faces and cells can be accessed using the macros:

 for(nf=0;nf<C_NFACES(cell,thread);nf++)
 { face_id = C_FACE(cell,thread,nf);
 face_thread = C_FACE_THREAD(cell,thread,nf);
 }

Number of faces
of each cell is
unknown

ME469B/6/GI 46

Geometry Macros

Many more available; refer to the FLUENT UDF Manual

ME469B/6/GI 47

Field Variables Macros

ME469B/6/GI 48

Field Variables Macros

Many more available; refer to the FLUENT UDF Manual

ME469B/6/GI 49

Control Macros

ME469B/6/GI 50

Code FlowChart - Segregated Solver

ME469B/6/GI 51

Additional Information

Many additional macros are available to implement different physical models
combustion models
particles-based models
….

It is formally possible to develop additional numerical methods
flux discretizations
variable reconstruction and clipping
….

ME469B/6/GI 52

UDF in other commercial CFD Codes CFX

CFX (v4) is a structured code; the data structure is much simpler because the
field variables are accessed directly. It uses 1D arrays where the quantities are
stored in succession

CFX UDFs are written in FORTRAN

For example:

 U(I,J,K) → U(IJK) where IJK = (K-1)*NI*NJ+(J-1)*NI

There are no macros, but examples of subroutines to perform the customization

USRBC
USRSRC
USRDIF
….

ME469B/6/GI 53

UDF in other commercial CFD Codes Star-CD

StarCD is an unstructured code similar to Fluent in term of data organization
But similar to CFX for the organization of the UDF.

StarCD has threads (as Fluent) and the UDF work normally on a cell-by-cell
basis

StarCD UDFs are written in FORTRAN

There are no macros, but examples of subroutines to perform the customization

BCDEFW
SORSCA
DIFFUS
….

ME469B/6/GI 54

Automation

ME469B/6/GI 55

CFD Solver Automation

• FLUENT can save a “journal” file
To start saving File → Write → Start Journal

 To stop saving File → Write → Stop Journal

• Journal file are ASCII editable files

• Commands are somewhat “obscure” (keywords, etc.)

• They can be made general by introducing User Defined Parameters

ME469B/6/GI 56

FLUENT Journal Files

 Fluent GUI is developed using a LISP dialect called SCHEME

To interact with Fluent Journal files via parameters it is necessary to use SCHEME
commands.

For example to fix the under-relaxation in the momentum equation the command is:

solve/set/under-relaxation/momentum 0.7

Otherwise we can define a variable:

(define my_url 0.7)
solve/set/under-relaxation/momentum my_url

ME469B/6/GI 57

FLUENT Journal Files

With SCHEME you can perform standard operations:

(define my_new_url (+ my_url 0.1))

To interact with Fluent Journal files via parameters it is necessary to use SCHEME
commands.

Loops and conditional statements

(if (> 3 2) ‘yes ‘no)

ME469B/6/GI 58

FLUENT Batch Execution

Batch NO GUI: fluent 2ddp –g –i <journalfile.jou>
Batch with GUI: fluent 2ddp –i <journalfile.jou>

Unfortunately journal files automatically saved by FLUENT contain commands
that operate directly on the GUI:

(cx-do-gui cx-activate-item “MenuBar*WriteSubMenu*Stop Journal”)

Therefore even for batch executions the GUI has to be activated to use journal files!

The other option is to generate the command files directly using the text-command
And NOT the GUI!!!

Many examples on the Web site of journal files that can be run in batch

ME469B/6/GI 59

;;;
(custom-field-function/define ,….) … ! Define Adaptation Function
;;;
;;; set few parameters
;;;
(define maxcells 200000) …. ! Set Control Parameters
(define minref .1)
;;;
(do ((j 0) ! Adaptation Loop
 (i 0 (+ i 1)))
 ((= i 5) j)
 (format "\n Iteration ~a step - STARTED " i)
;;;
(cx-gui-do cx-activate-item …) … ! Display Adaptation function
;;;
(cx-gui-do cx-activate-item "MenuBar*AdaptMenu*Iso-Value...") … ! Adapt
;;;
(cx-gui-do cx-activate-item "MenuBar*SolveMenu*Iterate...") … ! Iterate

;;;
 (format "\n Iteration ~a step - FINISHED \n" i)
) ! End Adaptation Loop

FLUENT Example of Scheme file for Adaptation

Available as adapt.scm from the Website

ME469B/6/GI 60

Example of Automatic Adaptation

Driven Cavity Problem

Start Initial Conditions - Uniform Grid

Perform 5 Steps of Adaptation Using Hanging Nodes

Adaptation Function is:

Scaled Velocity Difference =
(Velocity Gradient * Volume1/3)/Velocity

ME469B/6/GI 61

Example of Automatic Adaptation

Initial Grid: 100 elements Final Grid: 40,000 elements

ME469B/6/GI 62

Example of Automatic Adaptation

Initial Grid: 100 elements Final Grid: 40,000 elements

ME469B/6/GI 63

Optimization

Objective: Automatically find the best solution according
to a certain goal (cost function)

Approach: Requires several “similar” CFD simulations
obtained by varying one or few parameters (geometry, flow
conditions, etc.)

Scripts allow to perform this task very easily!

ME469B/6/GI 64

Optimization Procedure

FLUENT

GAMBIT

PROCESS
CONTROLLER

COST FUNCTION
EVALUATION

END

FLUENT

GAMBIT

FLUENT

GAMBIT

ME469B/6/GI 65

Optimization Procedure Example

By T. Doyle

Design and Trim Sails for a Modern Clippper Ship

ME469B/6/GI 66

Optimization Procedure Example
Design and Trim Sails for a Modern Clipper Ship

Aerodynamic
Force Definitions

One cost function is defined as Lift/Drag

ME469B/6/GI 67

Optimization Procedure Example
Design and Trim Sails for a Modern Clipper Ship

Grid Generation

Flow

ME469B/6/GI 68

Optimization Procedure Example
Design and Trim Sails for a Modern Clipper Ship

Flow Solutions

ME469B/6/GI 69

Optimization Procedure Example
Design and Trim Sails for a Modern Clipper Ship

Optimized Solution for Different Wind Directions

