Generate a 2D mesh in a 4×4 square
The mesh is Cartesian but with a rotated subdomain (angle is 45 degrees)
Choose grid dimensions and the size of the inner circle as you wish

Part 1: Generate the grid using a suitable transformation (see next page) and then import it in gambit

Part 2: Generate the grid directly in gambit and discuss the difficulties (try to make it look like the preious one!)

This functions transform ξ and η defined on a 2×2 square in the grid nodes reported in the previous page ($\theta=45 \mathrm{deg}$)

$$
\begin{aligned}
& x=\xi \cos (\theta \alpha)+\eta \sin (\theta \alpha) \\
& y=\eta \cos (\theta \alpha)-\xi \sin (\theta \alpha)
\end{aligned}
$$

where

$$
\begin{array}{ccc}
\left.r=\sqrt{(} \xi^{2}+\eta^{2}\right) & \alpha=0 & \text { if } \mathrm{r}>1 \\
& \alpha=\min (1,2(1-r)) & \text { if } \mathrm{r}<1
\end{array}
$$

