

ME 327: Design and Control of Haptic Systems Spring 2020

Lecture 7: Kinesthetic haptic devices: design and kinematics

Allison M. Okamura Stanford University

general design goals

free space feels free

- virtual objects feel like real objects
 - large forces (need strong actuators)
 - forces change quickly (high bandwidth)

sufficiently large workspace

haptic rendering goal

impedance-type kinesthetic devices

most force feedback devices are of the "impedance" type

admittance-type kinesthetic devices

"admittance"-type devices are not as common

mechatronics basics for impedance-type devices

a kinesthetic haptic system

a kinesthetic haptic system

motion signals

force generation signals

kinematics / design

transmission

- Transfers/amplifies force/torque from motor
- You don't want to feel the effects of the transmission!
- Types:
 - gears
 - belts/pulleys
 - capstan drive
 - friction drive
 - none (direct drive)

capstan drive

high transmitted force, low transmitted friction

capstan drive

a version of the haptic paddle

Phantom Premium, SensAble Technologies

grooved pulley

- increases friction and reduces slip
- prevents the cable from falling off
- can be difficult to assemble

Cara Gonzalez Welker

direct drive

motors attached directly to link(s)

Hayward (McGill)

transmission

Capstan drive

Friction drive

Stanford University

ME 327: Design and Control of Haptic Systems

Kinematic Relationships

In this class, a key kinematic relationship is:

 π radians = 180 degrees

Hapkit Kinematics: Motions

$$r_{\text{pulley}}\theta_{\text{pulley}} = r_{\text{sector}}\theta_{\text{sector}}$$

$$x_{\text{handle}} = r_{\text{handle}} \theta_{\text{sector}}$$

$$x_{\text{handle}} = \frac{r_{\text{handle}}r_{\text{pulley}}}{r_{\text{sector}}}\theta_{\text{pulley}}$$

Force-torque Relationships

Torque, or moment, is the tendency of a force to rotate an object.

If a force is perpendicular to r (the vector connecting the point about which the torque acts to the point at which the force is applied), this is the scalar relationship between force and torque:

Hapkit force/torque relationships

relationship between force and torque:

$$\tau = Fr$$

$$\frac{\tau_{\mathrm{pulley}}}{r_{\mathrm{pulley}}} = \frac{\tau_{\mathrm{sector}}}{r_{\mathrm{sector}}}$$

$$F_{\text{handle}} = \frac{\tau_{\text{sector}}}{r_{\text{handle}}}$$

$$F_{\text{handle}} = \frac{r_{\text{sector}}}{r_{\text{handle}}r_{\text{pulley}}} \tau_{\text{pulley}}$$

Kinematic Relationships

Belt-on-pulleys example

$$s_1 = r_1 \theta_1$$

$$s_2 = r_2 \theta_2$$

$$x = s_1 = s_2$$

$$\theta_2 = \frac{r_1}{r_2} \theta_1$$

Force-Torque Relationships

Belt-on-pulleys example

$$au_1 = F_1 r_1$$
 $F_1 = rac{ au_1}{r_1}$
 $F_1 = F_2$
 $au_2 = F_2 r_2$
 $au_2 = rac{r_2}{r_1} au_1$

rendering a wall

(in one degree of freedom)

classic algorithm for rendering with an impedance-type device

- I. read the position of the user from the haptic display
- 2. see if there is a collision with objects in the virtual environment
- 3. if there is, calculate forces
- 4. send corresponding torque commands to motors, and change the virtual environment state

static rigid body interaction

- the virtual environment pretends that the user is holding onto a fictional rigid body though the haptic device handle
- this rigid body interacts with other "rigid" bodies in the virtual environment.
- with impedance control, nothing is perfectly rigid: F = kx

rendering a simple wall

If
$$x_{user} > x_{wall}$$
, $F = k(x_{wall} - x_{user})$
stiffness $k > 0$

when the tool is not a point

If
$$(x_{user} + r) > x_{wall}$$
, $F = k(x_{wall} - x_{user} - r)$
stiffness $k > 0$

kinesthetic device challenges

- competing goals of high stiffness and low mass
- force feedback feels soft ("Nerf World")
- point-based interactions are overly simple
- devices of sufficient quality are expensive
- limited workspace size, degrees of freedom, and actuation power
- usually constrained to sit at a desk
- no programmable tactile feedback