

ME 327: Design and Control of Haptic Systems Spring 2020

Lecture 6: Haptic Illusions

Allison M. Okamura Stanford University

Interplay of Senses

Slide courtesy Heather Culbertson (USC) © Allison M. Okamura, 2020

Stanford University

Pseudohaptics

Slide courtesy Heather Culbertson (USC)

Stanford University

ME 327: Design and Control of Haptic Systems

Stiffness

Li, M., Ridzuan, M. B., Sareh, S., Seneviratne, L. D., Dasgupta, P., & Althoefer, K. (2014). Pseudo-haptics for rigid tool/soft surface interaction feedback in virtual environments. *Mechatronics*, 24(8), 1092-1100.

https://youtu.be/oijhqAzr5ql

Slide courtesy Heather Culbertson (USC)

Stanford University

Stiffness

k = Bk = Ck = A

Yabe, Shin-ichiro, et al. "Pseudo-haptic feedback on softness induced by squeezing action." 2017 IEEE World Haptics Conference (WHC). IEEE, 2017.

https://youtu.be/Caw-Ragv52I

Slide courtesy Heather Culbertson (USC)

Stanford University

Scrolling (friction)

- C/D = Control / Display ratio
- Maps physical displacement of user input (control) to the on-screen movement (display)

Narumi, T., Ujitoko, Y., Ban, Y., Tanikawa, T., Hirota, K., & Hirose, M. (2017). Resistive swipe: Visuohaptic interaction during swipe gestures to scroll background images on touch interfaces. In 2017 IEEE World Haptics Conference (WHC) (pp. 334-339). IEEE.

> Slide courtesy Heather Culbertson (USC) © Allison M. Okamura, 2020

Stanford University

Stick-Slip

Presenting Static Friction Sensation at Stick-slip Transition using Pseudo-haptic Effect

Yusuke Ujitoko Yuki Ban Koichi Hirota

Hitachi, Ltd. The University of Tokyo The University of Electro-Communications

https://youtu.be/iFK798zVM0w

Slide courtesy Heather Culbertson (USC) © Allison M. Okamura, 2020

Stanford University

Texture

Lecuyer, A., Burkhardt, J. M., & Etienne, L. (2004). Feeling bumps and holes without a haptic interface: The perception of pseudo-haptic textures. *Proceedings of the ACM CHI International Conference in Human Factors in Computing Systems*.

Slide courtesy Heather Culbertson (USC) © Allison M. Okamura, 2020

Stanford University

Texture

https://youtu.be/zZZuZlbtjPs

Stanford University

ME 327: Design and Control of Haptic Systems

Slide courtesy Heather Culbertson (USC) © Allison M. Okamura, 2020

Slide courtesy Heather Culbertson (USC)

ME 327: Design and Control of Haptic Systems

Passive Haptics

Azmandian, M., Hancock, M., Benko, H., Ofek, E., & Wilson, A. D. (2016, May). Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences. In *Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems* (pp. 1968-1979). ACM.

Slide courtesy Heather Culbertson (USC) © Allison M. Okamura, 2020

Stanford University

Passive Haptics

https://youtu.be/v-5u0z4zA_8

Stanford University

ME 327: Design and Control of Haptic Systems

Slide courtesy Heather Culbertson (USC) © Allison M. Okamura, 2020

Redirected Walking

Matsumoto, K., Ban, Y., Narumi, T., Yanase, Y., Tanikawa, T., & Hirose, M. (2016, July). Unlimited corridor: redirected walking techniques using visuo haptic interaction. In ACM SIGGRAPH 2016 Emerging Technologies (p. 20). ACM.

Also, at Adam Savage's Lab (USC) https://youtu.be/XOxmMurUv3Q

https://youtu.be/u8pw81VbMUU

Slide courtesy Heather Culbertson (USC)

Stanford University

ME 327: Design and Control of Haptic Systems

Haptic Illusions

Slide courtesy Heather Culbertson (USC)

Stanford University

ME 327: Design and Control of Haptic Systems

Tendon Vibration Illusion

Allison doing the Pinocchio illusion on Brain Games, S7 E5 "Super Senses" https://www.imdb.com/title/tt5606054/

G.M. Goodwin, D.I. McCloskey, and P.B.C. Matthews, "The Contribution of Muscle Afferents to Kinesthesia Shown by Vibration Induced Illusions of Movement and by the Effects of Paralyzing Joint Afferents," Brain, vol. 95, pp. 705-748, 1972.

Kito, T., Hashimoto, T., Yoneda, T., Katamoto, S., & Naito, E. (2006). Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration. *Brain research*, 1114(1), 75-84.

Stanford University

ME 327: Design and Control of Haptic Systems

Thermal Grill Illusion

- Originally demonstrated in 1896 by Torsten Thunberg
- When you press a hand against the grill (alternating cool and warm bars), you experience the illusion of burning heat.

AD Craig et al., "The thermal grill illusion: unmasking the burn of cold pain", Science Vol. 265, 1994

Slide courtesy Tania Morimoto (UCSD)

Stanford University

ME 327: Design and Control of Haptic Systems

Rubber Hand Illusion

M. Botvinick and J. Cohen, "Rubber hands 'feel' touch that eyes see," Nature, vol. 391, no. 6669, pp. 756–756, 1998.

Stanford University

ME 327: Design and Control of Haptic Systems

Size-Weight Illusion

When two objects with same mass are lifted, the smaller object is perceived to be heavier

Stevens, Joseph C., and Lee L. Rubin. "Psychophysical scales of apparent heaviness and the sizeweight illusion." Perception & Psychophysics 8.4 (1970): 225-230.

Stanford University

Other Weight Illusions

Perception of weight can also be affected by:

- Material (lighter when material "should be" heavier)
- Surface texture (lighter when texture rougher)
- Color (lighter when darker)
- Temperature (cold objects feel heavier)

Saltation Illusion

F.A. Geldard and C.E. Sherrick, "The Cutaneous 'Rabbit': A Perceptual Illusion," Science, vol. 178, pp. 178-179, 1972.

Stanford University

ME 327: Design and Control of Haptic Systems

Illusory Motion/Vibration Flow

Stanford University

ME 327: Design and Control of Haptic Systems