

ME 327: Design and Control of Haptic Systems Spring 2020

Lecture 5: Tactile Haptic Devices

Allison M. Okamura Stanford University

tactile feedback

- goal is to stimulate the skin in a programmable manner to create a desired set of sensations
- sometimes **distributed** tactile feedback is provided

Stanford University

Stanford University

ME 327: Design and Control of Haptic Systems

- Spatial distribution of SAI
- No temporal information

- Vibratory information
 - FAI and FAII

- Mediated by skin of finger pad
 - Skin stretch or adhesion

- Heat transfer property between texture and finger
- TRP ion-channels on free nerve endings

Stanford University

- Tactile cues
- Contact area between finger pad and object is important

Feeling through a tool

- Rigid link between surface and fingers
- No spatial cues available
 - Skin deformation from tool, not from surface
- Vibratory stimuli
- Warm/cool dimension cannot be conveyed

technologies and interaction modes

Jerome Pasquero, Survey on Communication through Touch, Technical Report: TR-CIM 06.04, 2006

particle jamming

Stanley et al. 2013 © Allison M. Okamura, 2020

Stanford University

skin stretch

Quek et al. 2013, Schorr et al. 2013 © Allison M. Okamura, 2020

Stanford University

variable friction surfaces

Northwestern TPad (many publications): http://stage-admin.northbynorthwestern.com/story/morethan-a-feeling/

Disney's TeslaTouch (Bau et al. 2011): https://www.youtube.com/watch?v=313MDNZk-31

Stanford University

ME 327: Design and Control of Haptic Systems

mid-air haptics

Ultrasonic haptics (Ultrahaptics): https://www.youtube.com/watch?v=6lhQnWb44zk

Vortex haptics (Microsoft): https://www.youtube.com/watch?v=b5vzvMCmiyQ

Stanford University

ME 327: Design and Control of Haptic Systems

vibration feedback

Stanford University

ME 327: Design and Control of Haptic Systems

eccentric mass motors

K. J. Kuchenbecker © Allison M. Okamura, 2020

shaftless vibration motors

Three pole DC motor with eccentric coil

K. J. Kuchenbecker © Allison M. Okamura, 2020

Stanford University

vibration motors

K. J. Kuchenbecker © Allison M. Okamura, 2020

Stanford University

shaftless vibration motors

information display

Rotella et al. 2012

Stanford University

ME 327: Design and Control of Haptic Systems

linear actuator: C2 Tactor

SPECIFICATIONS: C-2 TACTOR

1.2" diameter by 0.31" high 17 grams
anodized aluminum,
polyurethane
Flexible, insulated, #24 AWG.
0.3" diameter, pre-loaded on
skin.
7.0 ohms nominal.
50 megohm minimum at 25 Vdc,
leads to housing.
33 ms max
+/- 1 dB from sensory threshold
to 0.04" peak displacement.
Sine wave tone bursts 250Hz at
0.25A rms nominal, 0.5 A rms
max for short durations.
Bipolar, linear or switching
amplifier, 1 W max, 0.5 W
typical.

www.eaiinfo.com

C2 Tactor application

Accelerometer Foam Surfaces

Gurari et al. 2009

ME 327: Design and Control of Haptic Systems

C2 Tactor application

Stanford University

ME 327: Design and Control of Haptic Systems

C2 Tactor application

tactor waistbelt

virtual prosthetic hand

Cheng et al. 2012

Stanford University

ME 327: Design and Control of Haptic Systems

Vibrotactile + Force Feedback

ME 327: Design and Control of Haptic Systems

another vibration actuator (voicecoil)

Haptuator, www.tactilelabs.com

Stanford University

ME 327: Design and Control of Haptic Systems

Voicecoil actuator

NCC (Noving Coil)

www.h2wtech.com

McMahan and Kuchenbecker 2009

ME 327: Design and Control of Haptic Systems

Voicecoil actuator application

Culbertson et al. 2013

Stanford University

ME 327: Design and Control of Haptic Systems