

ME 327: Design and Control of Haptic Systems Spring 2020

Lecture 2: Tactile and Kinesthetic Devices

Allison M. Okamura Stanford University

today's objectives

explain the fundamentals of kinesthetic and tactile devices consider what haptic devices are good for

kinesthetic vs. tactile haptic devices

Kinesthetic haptic devices display forces or motions through a tool

Tactile haptic devices stimulate the skin

kinesthetic vs. tactile haptic devices

Kinesthetic haptic devices are usually **grounded**

Tactile haptic devices can more easily be **wearable**

force is transmitted from ground to hand vibration feedback element encased in glove

tactile (cutaneous) device basics

Stanford University

ME 327: Design and Control of Haptic Systems

tactile feedback

- goal is to stimulate the skin in a programmable manner to create a desired set of sensations
- sometimes **distributed** tactile feedback is provided
- tactile feedback is generated by a tactile device, sometimes called a tactile display
- not usually called a tactile interface why not?
- can aim to recreate real sensations, create novel ones, or communicate information

technologies and interaction modes

Jerome Pasquero, Survey on Communication through Touch, Technical Report: TR-CIM 06.04, 2006

Tactile feedback array

Wagner & Howe (2002)

Kontarinis, et al. (1995)

Russell

Stanford University

ME 327: Design and Control of Haptic Systems

Salada, et al. (2002-5)

© Allison M. Okamura, 2020

Stanford University

Burdea (1996)

ME 327: Design and Control of Haptic Systems

kinesthetic (force-feedback) device basics

Stanford University

ME 327: Design and Control of Haptic Systems

typical kinesthetic device configurations

Stanford University

ME 327: Design and Control of Haptic Systems

manipulandums (expensive)

Omega from Force Dimension

delta configuration 3 degrees of freedom Phantom Premium 1.5 from SensAble/Geomagic

5-bar + rotation 3 degrees of freedom Virtuose from Haption

additional "wrist" 6 degrees of freedom

> all images from Wikimedia Commons © Allison M. Okamura, 2020

Stanford University

manipulandums (cheaper)

Falcon from Novint

delta configuration 3 degrees of freedom

image from Wikimedia Commons

Phantom Omni/Touch from SensAble/Geomagic

5-bar + rotation 3 degrees of freedom

photographed by Akiko Nabeshima

Sidewinder from Microsoft

spherical mechanism 2 degrees of freedom

image from Wikimedia Commons

Stanford University

ME 327: Design and Control of Haptic Systems

Grip/grasp

Custom haptic gripper for Phantom Premium

© 2007 IEEE. Reprinted, with permission, from L. N. Verner and A. M. Okamura.. Effects of Translational and Gripping Force Feedback are Decoupled in a 4-Degreeof-Freedom Telemanipulator, World Haptics Conference,, pp. 286-291, 2007

Single-finger Cybergrasp from Cyberglove Systems

photograph courtesy Stanford Center for Design Research da Vinci Surgical System from Intuitive Surgical, Inc. (no programmable force feedback on gripper)

photographed by Akiko Nabeshima

Stanford University

Exoskeletons

KINARM Exoskeleton from BKIN Technologies Harvard

images from Wikimedia Commons

Stanford University

ME 327: Design and Control of Haptic Systems

Hapkit

ME 327: Design and Control of Haptic Systems

Hapkit

Stanford University

ME 327: Design and Control of Haptic Systems

what are haptic devices good for?

this reviews points made in: K. E. MacLean. Haptic interaction design for everyday interfaces. Reviews of Human Factors and Ergonomics, 4:149-194, 2008.

Stanford University

ME 327: Design and Control of Haptic Systems

Trends driving haptics

- Networking constant connectivity
- Ubiquity of computing devices beyond sparse visual real estate
- Multitasking doing more things at once may benefit from multiple channels of communcation
- Virtualization fostering presence
- Information management volume challenge and attention challenge
- Fragmentation time slicing interruptions by modality

When to use haptic feedback

- Precise force vs. position control
- Guidance (for training or shared control)
- Abstract communication and information display
- Notifications and background awareness
- Augmentation of graphical user interfaces
- Expressive control
- Communication of affect
- Mobile and handheld computing

Stanford University