ME 20N: Haptics: Engineering Touch
Autumn 2017

Week 7:
2-D Haptic Rendering

Allison M. Okamura
Stanford University

2-D Rendering

O @
T h Joint o Forward
e kinematic X, V
- SEnsors equations
[
H a Ptl C Haptic
device

Loop i S Y

f

A4

| @

Virtual environment

A

Amplifier Kinematics [*

To begin, the user moves the haptic device @ ©®

|. Movement of the device is sensed

2. Kinematic equations are used to find the motion of the haptic interaction
point

If necessary, contact with object(s) in the virtual environment are detected

If necessary, the relevant point of the surface of the virtual object is detected
The force to be displayed to the user is calculated

Kinematics are used to determine actuator commands

An amplifier is used to send current/voltage to the actuator

The user feels a force from the haptic device

No LU AW

rendering (inside) a box

F. =0
F,=0

fx >x

user wall-max

F.=F +k(x

fx <x

user wall-min

F.=F +k(x

lf y user y wall-max
Fy = Fy + k(ywall—max

wall-max

wall-min

lf yuser < ywall—min
Fy = Fy + k(ywall—min

— X

user)

— X

user)

o yuser)

- yuser)

Xwall-min

Ywall-max

p user

Ywall-min

Xwall-max

rendering (outside) a box

-—
Ywall-max Puser

Xwall-min Xwall-max

F — O Ywall-min

if [(’xuser X yall - max) & (X
&(yuser ywall—max) & (yuser ywall—min)]

user wall —min)

Then... what force should be displayed??

rendering (outside) a circle

T = \/(xuser T xsphere)2 + (yuser o ysphere)2

- 1 [Lyser — Lsphere]

T Yuser — Ysphere

if 7 < R,then F = k(R —r)f

[fOTC@x] . [k(R — T)(xuser — stphere)/r]
fOTCGy o k(R — T) (yuser — ysphere)/r

Xuser R-r

(&

output the computed force

T1 T_fa:_
= J
T2 fy

what is this magical J* ?

The Jacobian

Jacobian

J
° /\
92 Y~ 2 .
. . J-1 : s
v 1 L1 .
joint velocities Cafte§1fln
velocities

The Jacobian is a matrix that can transform
between joint velocities and Cartesian velocities

Jacobian

J-T
o /\
72 K/ fy g
: JT -
T1 £y
joint Cartesian
torques forces

The Jacobian can also transform between joint
torques and Cartesian forces

computing end-effector velocity

* forward kinematics tells us the endpoint
position based on joint positions

* how do we calculate endpoint velocity from
joint velocities!?

* use the Jacobian matrix

i = J0O

formulating the Jacobian

multidimensional form XL = 90, L -+ 50,2 + ...
of the chain rule: . @9' +@9' .

: C - Odx Oz | r 5 7
assemble in T _ 00: b 01
matrix form: Y _ a_eyl 8—32 | 0y

Singularities

* Many devices will have configurations at which the
Jacobian is singular

 This means that the device has lost one or more
degrees of freedom in Cartesian Space

 Two kinds:

— Workspace boundary

— Workspace interior

Singularity Math

* |f the matrix is invertible, then it is non-singular.
[] _1 .
0=J X

* Can check invertibility of J by taking the
determinant of J. If the determinant is equal to 0,
then J is singular.

 Can use this method to check which values of 6
will cause singularities.

compute the necessary
joint torques

the Jacobian can also be used to relate joint
torques to end-effector forces:

r=Jf

this is a key equation for multi-degree-of-
freedom haptic devices

how do you get this equation!?

the Principle of f-ox=7-0q
virtual work fT Sx — 7_T 5 q
states that changing the T T

coordinate frame does t° Joq=7"0q

not change the total fTJ -
work of a system -

J'f =~

Haplink

Forward Kinematics

The forward kinematic equations are:

[P,] [—l,sin(6,) +]

-~

la cos(0,) + ¢y

Py

ry | —Ip, Sil‘l(!;a +~éb) + Py
ry | | lpcos(fa+6) +p,

0, = 0, + A6,

b, = 0y + AB,

Hma - = L 01
T'ma

O = ——20
T'mb

Jacobian

e o -
_ 00, 00
J=1 9y oy
_ aea 891) -

~

g Lgp COS(@NQ + QNQ) — L4 cos(6,)
| —Lpsin(8y +0,) — L4 sin(6,)

S _ [00 o1
| J10 J11

inside the function calculatePositionHandleAndJacobian

// Compute the angle of the paddles in radians

theta ma = (double)(getCountsSensorl())*2*3.1416/TOTAL_ENCODER_COUNTS;
theta mb = (double) (getCountsSensor2())*2*3.1416/TOTAL ENCODER COUNTS;
theta a = theta ma*R MA/R A;

theta b = -theta mb*R MA/R A + THETA B OFFSET RAD;

// Compute px and py

tildetheta a = theta a + DELTATHETA A;
px = - (L A *sin(tildetheta a)) + CX;
py = L A * cos(tildetheta a) + CY;

//Compute rx and ry in n

tildetheta b = theta b + DELTATHETA B;

rx = -(L B *sin(tildetheta b + tildetheta a))+ px;
ry = L B * cos(tildetheta b + tildetheta a)+ py;

//build the Jacobian

J00 = -L B*cos(tildetheta b + tildetheta a) - L A * cos(tildetheta a);
J01 = -L B*cos(tildetheta b + tildetheta a);

J10 = -L B*sin(tildetheta b + tildetheta a) - L A*sin(tildetheta a);
J11 = -L B*sin(tildetheta b + tildetheta a);

inside your haptic rendering function, for example

haplinkForceOutput
ForceX = 0.5;
ForceY = 0.5;
TorqueX = (JO00*ForceX + J10*ForceY)*0.001;
TorqueY = (JO01*ForceX + Jll*ForceY)*0.001;
TorqueMotorl = - ((TorqueX*R MA) /R A);
TorqueMotor2 = - ((TorqueY*R MB) /R B);

outputTorqueMotorl (TorqueMotorl) ;
outputTorqueMotor?Z (TorqueMotor?2) ;

Changes to make in main.h and main.cpp

First, use the code for Haplink, not Hapkit:

// #define HAPKIT 1
#define HAPLINK 2

Second, depending on the starting angle you use for
Hapkit B, you might need to change the offset:

fdefine THETA B OFFSET -40.0 WHY?

Call functions in the section #cise //then you are using HAPLINK

calculatePositionHandleAndJacobian () ;

