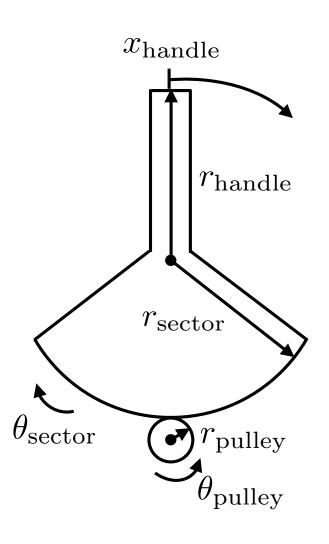


Week 6: 2-Degree-of-Freedom Kinematics

Allison M. Okamura Stanford University

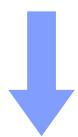
kinematics in multiple degrees of freedom

Hapkit kinematics (I-DOF)



$$r_{\text{pulley}}\theta_{\text{pulley}} = r_{\text{sector}}\theta_{\text{sector}}$$

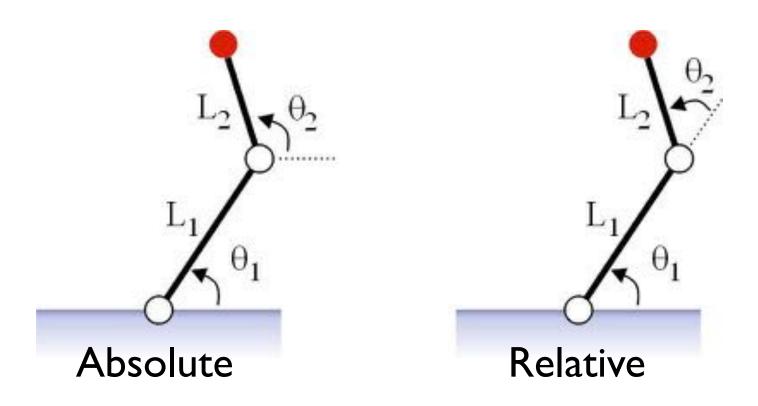
$$x_{\text{handle}} = r_{\text{handle}} \theta_{\text{sector}}$$



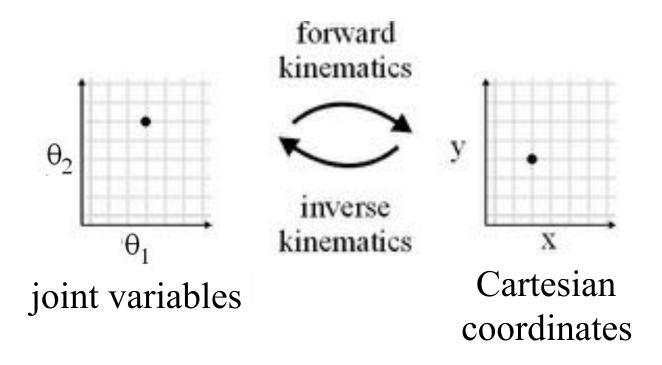
$$x_{\text{handle}} = \frac{r_{\text{handle}}r_{\text{pulley}}}{r_{\text{sector}}}\theta_{\text{pulley}}$$

joint variables

Be careful how you define joint positions



forward kinematics for higher degrees of freedom



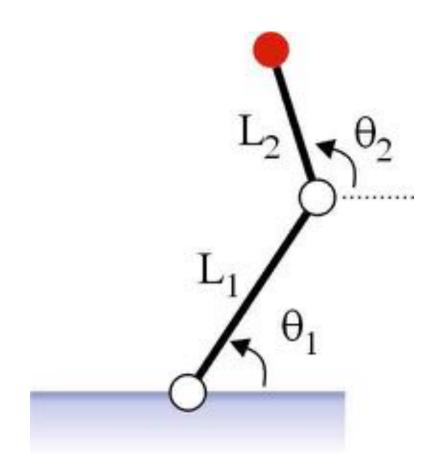
fwd kinematics: from joint angles, calculate endpoint position

serial structures

absolute forward kinematics

$$x = L_1 \cos(\theta_1) + L_2 \cos(\theta_2)$$

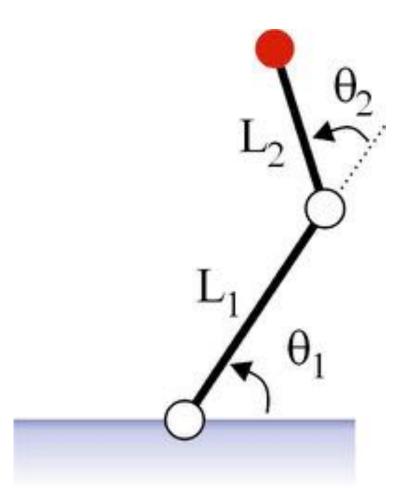
$$y = L_1 \sin(\theta_1) + L_2 \sin(\theta_2)$$



relative forward kinematics

$$x = L_1 cos(\theta_1) + L_2 cos(\theta_1 + \theta_2)$$

$$y = L_1 \sin(\theta_1) + L_2 \sin(\theta_1 + \theta_2)$$

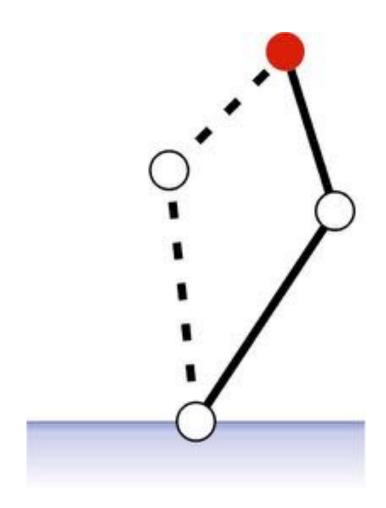


Inverse Kinematics

- Using the end-effector position, calculate the joint angles necessary to achieve that position
- There can be:
 - No solution (workspace issue)
 - One solution
 - More than one solution

example

- Two possible solutions
- Our devices will be simple enough that you can just use geometry for inverse kinematics



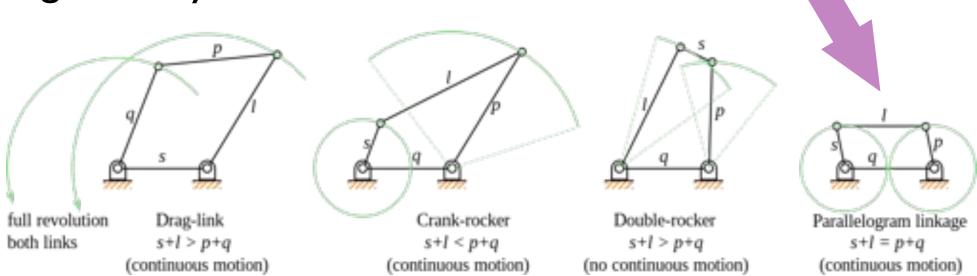
parallel structures

four-bar linkage

FIG. 1

PATIENT

- commonly used I-DOF mechanism
- relationship between input link angle and output link angle can be computed from geometry

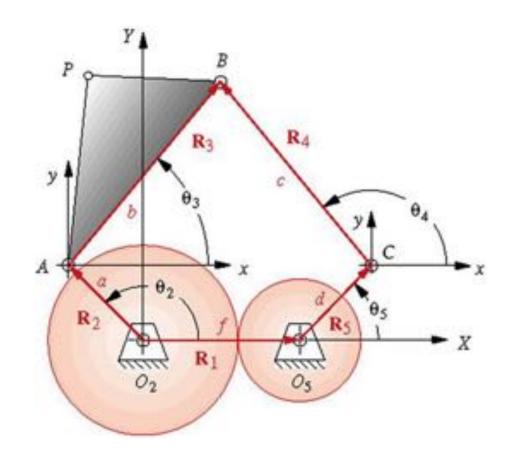


wikipedia.org

five-bar linkage

- commonly used 2-DOF mechanism
- relationship between input link angle and output link angle can be computed from geometry

example:

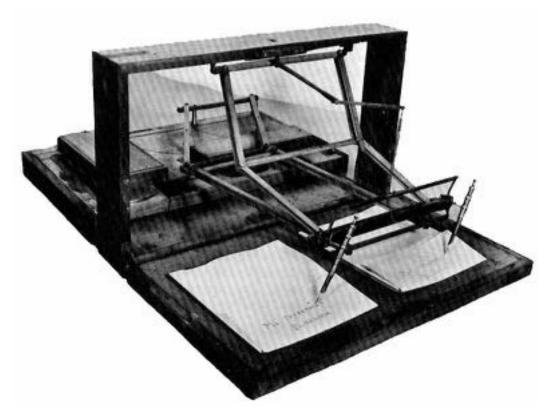


pantograph

Definition I: a mechanical linkage connected in a manner based on parallelograms so that the movement of one pen, in tracing an image, produces identical movements in a second pen.

Definition 2: a kind of structure that can compress or extend like an accordion

pantograph example

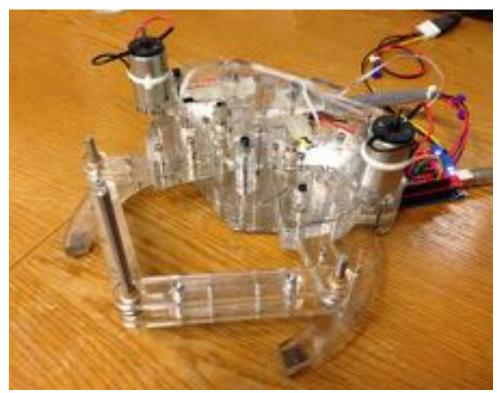


A Polygraph is a device that produces a copy of a piece of writing simultaneously with the creation of the original, using pens and ink.

Famously used by Thomas Jefferson ~1805.

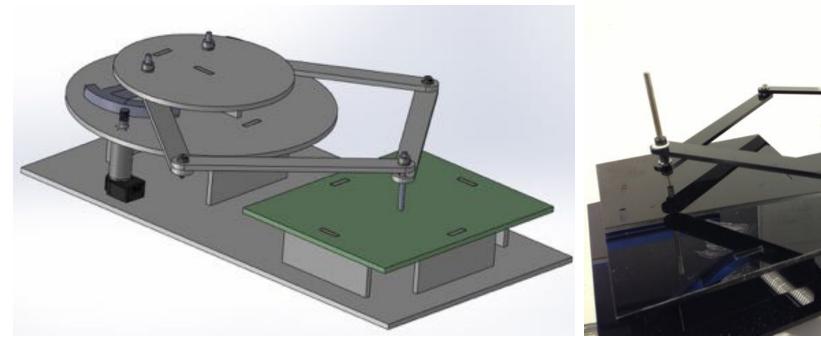
Typically uses a pantograph mechanism: a five-bar linkage with parallel bars such that motion at one point is reproduced at another point

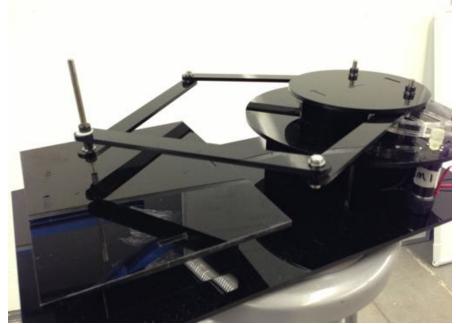
pantograph haptic device



Xiyang Yeh, ME 327 2012 http://charm.stanford.edu/ME327/Xiyang

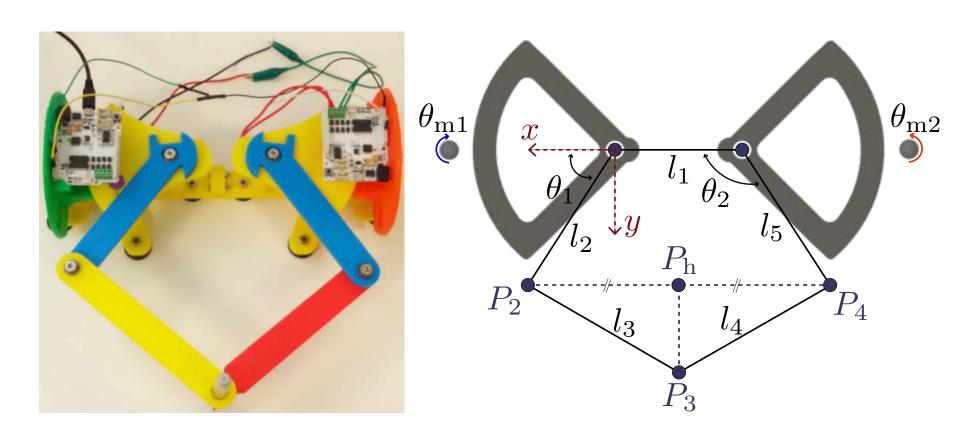
pantograph haptic device





Sam Schorr and Jared Muirhead, ME 327 2012 http://charm.stanford.edu/ME327/JaredAndSam

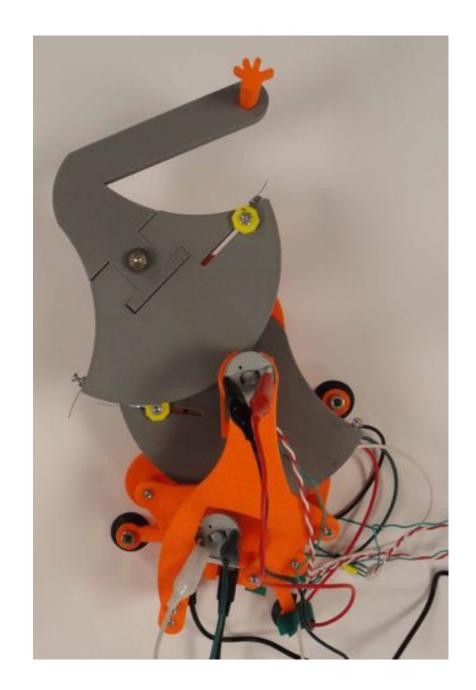
pantograph haptic device

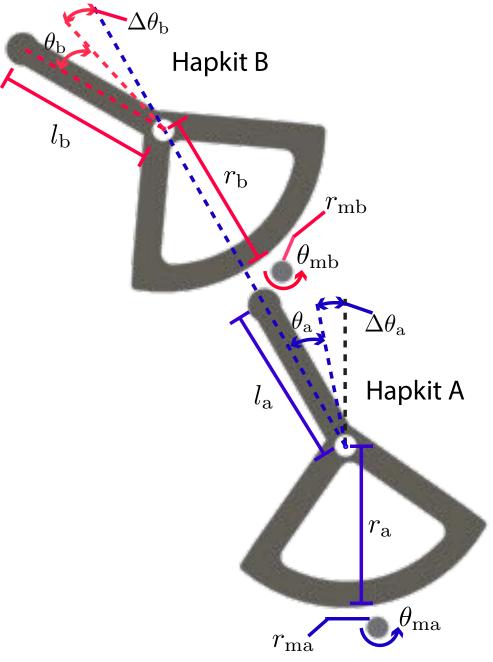


Melisa Orta Martinez et al., World Haptics Conference 2017 http://ieeexplore.ieee.org/document/7989891/

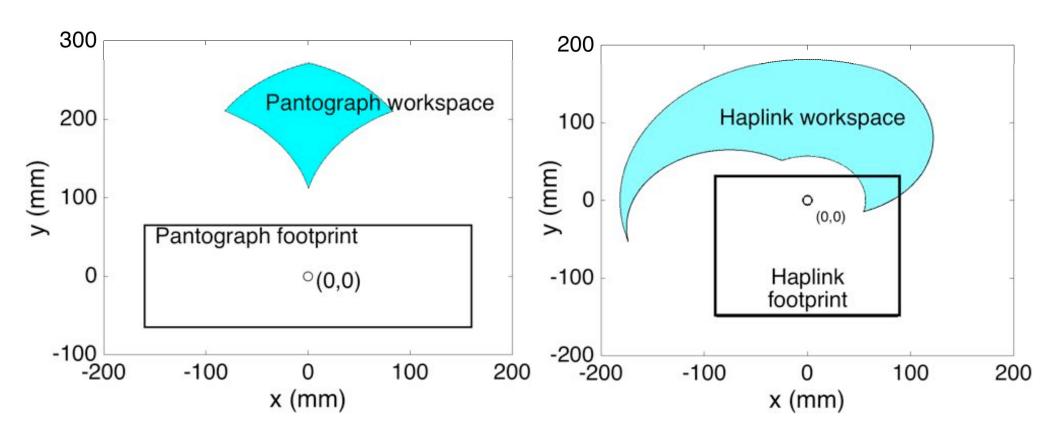
Haplink

Hapkit Graphkit Haplink



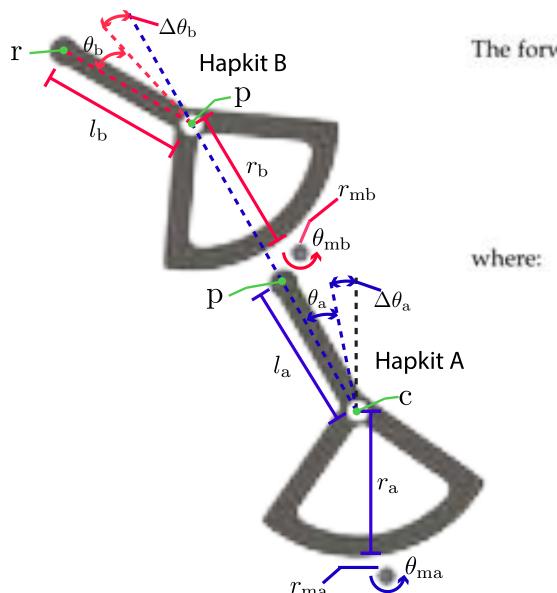


2-DOF Workspace



Q:What does a I-DOF Hapkit workspace look like?

Kinematics



The forward kinematic equations are:

$$\begin{bmatrix} p_x \\ p_y \end{bmatrix} = \begin{bmatrix} -l_a \sin(\tilde{\theta}_a) + c_x \\ l_a \cos(\tilde{\theta}_a) + c_y \end{bmatrix}$$

$$\begin{bmatrix} r_x \\ r_y \end{bmatrix} = \begin{bmatrix} -l_b \sin(\tilde{\theta}_a + \tilde{\theta}_b) + p_x \\ l_b \cos(\tilde{\theta}_a + \tilde{\theta}_b) + p_y \end{bmatrix}$$

$$\tilde{\theta}_{a} = \theta_{a} + \Delta \theta_{a}$$

$$\tilde{\theta}_{\rm b} = \theta_{\rm b} + \Delta \theta_{\rm b}$$

$$\theta_{\rm ma} = -\frac{r_{\rm a}}{r_{\rm ma}}\theta_{\rm a}$$

$$\theta_{\rm mb} = -\frac{r_{\rm b}}{r_{\rm mb}}\theta_{\rm b}$$