

Week 4: Mechatronics

Allison M. Okamura Stanford University

Announcements

- Continue to bring your laptop and power cord (and USB converter, if needed) to class for the rest of the quarter.
- If you need to adjust the mechanics of your Hapkit, please do this before Thursday
- Try to get checked off on Lab 4 by the end of class Thursday
- Note: No Thursday office hours due to Alumni lecture

Hapkit Sensor

Allison M. Okamura Stanford University

sensor types

- magnetic
- optical
- acoustic
- inertial

magnetic: TrakStar, Ascension

optical: Microsoft Kinect

acoustic: ultrasonic proximity sensor, BiF

inertial: wearable IMU, MotionNode

mechanical

(our focus, since these are the sensors typically integrated with the actuator in kinesthetic haptic devices)

mechanical: Faro arm

mechanical trackers

- ground-based linkages most commonly used
- joint position sensors
 - digital: optical encoders are most common
 - analog: magnetic sensors and potentiometers are most common

Encoders

- how do they work?
 - -Typically, a focused beam of light aimed at a matched photodetector is interrupted periodically by a coded pattern on a disk
 - -In our case, the rotation is sensed by magnetic signals instead of light
 - -Produces a number of pulses per revolution (Lots of pulses = high cost)
- quantization problems at low speeds
- absolute vs. referential

Encoders

• phase-quadrature encoder

- 2 channels, 90° out of phase
 - -allows sensing of direction of rotation
 - -4-fold increase in resolution

Hall-Effect Sensors

How do they work?

a small transverse voltage is generated across a current-carrying conductor in the presence of a magnetic field

(Discovery made in 1879, but not useful until the advent of semiconductor technology.)

Hall-Effect Sensors

$$V_h = \frac{R_h IB}{t}$$

 V_h = Hall voltage

 R_h = Hall coefficient

I = Current

B = Magnetic flux density

t = Element thickness

- amount of voltage output related to the strength of magnetic field passing through.
- linear over small range of motion (need to be calibrated)
- affected by temperature, other magnetic objects in the environments

measuring velocity

- differentiate position
 - advantage: use same sensor as position sensor
 - disadvantage: get noisy signal
- alternative
 - for encoders, measure time between ticks

discrete differentiation

- many different methods
- simple example:
 - average 20 readings = PI
 - average next 20 readings = P2

$$V = \frac{P1 - P2}{t}$$

- where t is the the period of the servo loop
- differentiation increases noise
- usually need to filter

Hapkit Actuator

Allison M. Okamura Stanford University

Actuator types

For kinesthetic haptic devices, the actuator of choice is the electric motor, specifically:

- DC (direct current)
- Brushed
- PM (permanent magnet)

Burdea

PM DC brushed motors

 Rotating armature with coil windings is caused to rotate relative to a permanent magnet

 Current is transmitted through brushes to armature, and is constantly switched so that the armature magnetic field remains fixed.

DC motor components

DC motor terms

- Cogging/torque ripple
 - tendency for torque output to ripple as the brushes transfer power
- Friction/damping
 - caused by bearings, brushes, and eddy currents
- Stall torque
 - max torque delivered by motor when operated continuously without cooling

Torque ripple

Motor equations

• Torque constant

 k_T

$$\tau = k_T i$$

Speed constant

 k_v

$$v_{\rm emf} = k_v \dot{q}$$

Dynamic equations

$$v = L\frac{di}{dt} + Ri + v_{\rm emf}$$

$$m\ddot{q} + b\dot{q} = \tau$$

Motor amplifier types

current amplifier

(voltage controlled current source VCCS)

directly controls current current = torque (good!) expensive

voltage amplifier

(voltage controlled voltage source VCVS)

indirectly controls current current depends on several factors less expensive

ardumotor shield (https://www.sparkfun.com/products/9815) and Adafruit TB6612 I.2A DC/Stepper Motor Driver Breakout Board

Pulse width modulation

assumes that the average signal is a constant signal

duty cycle is the proportion of **on** time to the **period**

http://www.barrgroup.com/

useful if you do not have a D/A converter to send analog signals to the motor circuit

switching frequency must be much faster than the mechanical dynamics of the system

Motor in your Hapkit

Pololu MP I2V Motor

https://www.pololu.com/product/3236/specs

Transmission

- Transfers/amplifies force/torque from motor
- You don't want to feel or see the effects of the transmission!
- Types:
 - gears
 - belts/pulleys
 - capstan drive
 - none (direct drive)

Capstan drive

high transmitted force, low transmitted friction

Capstan drive

Phantom Premium, SensAble Technologies

Direct drive

motors attached directly to link(s)

Hayward (McGill)