
Haptics: Engineering Touch Allison Okamura
Stanford University Autumn 2017

Lab Assignment 7:
2-D Haptic Rendering

In this week's lab assignment, you will render two-dimensional haptic virtual environments using your
Haplink. This laboratory has four parts:

• Step 1: Test Haplink position sensing and force output
• Step 2: Render the inside of a box
• Step 3: Render the outside of circle
• Step 4: Render something else

Demonstrate each of your virtual environments to Allison.

Step 1: Test Haplink

In this part of the lab, you will test that your Haplink is correctly sensing position and outputting force.

Here are the substeps to follow for this part of the lab:

1. Check the device kinematics. In last week’s lecture, we gave the kinematics of the Haplink, which
you can compare against the function calculatePositionHandleAndJacobian() in the file
haplink_position.cpp (note that this will be in the section under #ifdef ENCODERS). You’ll see
that the code uses the following constants, which are defined in the file haplink_position.h.
#define CX 0.0 // center point x coordinate
#define CY 0.0 // center point y coordinate
#define L_A 87.0 // length of a linkage in mm
#define L_B 100.0 // length of b linkage in mm
#define R_A 75.0 // radius of Sector a in mm
#define R_B 75.0 // radius of Sector b in mm
#define R_MA 5.0 // radius of Motor a in mm
#define R_MB 5.0 // radius of Motor b in mm
#define DELTATHETA_A 0.8727 // theta a offset in rad (50 deg)
#define DELTATHETA_B -1.4 // theta b offset in rad (-80 deg)

Use a ruler/calipers to check these measurements, using the diagram given in lecture to match these
constants with physical locations on the Haplink.

The, fix a small (but important!) bug in the code. In the file haplink_position.cpp, in the function
calculatePositionHandleAndJacobian (make sure it is in the #ifdef ENCODERS section), add
a negative sign in from of the first term in the calculation for theta_b, as shown here:
theta_b = -theta_mb*R_MA/R_A + THETA_B_OFFSET_RAD;

2. Hook up the electronics for both motors (see
http://web.stanford.edu/class/me20n/labmaterials/haplink2-electronics.pdf, very last page), and
connect the control board to your computer via USB. After you have finished the wire connections,
plug in the 5 V power supply, but wait to plug in the 12 V power supply until Step 1.4.

3. As described in lecture, add code to haplink_virtual_environments.cpp (and the corresponding .h
file) with a new function to do 2-D force output. This function could be called
haplinkForceOutput. Also modify main.h to use the Haplink instead of the Hapkit, and in
main.cpp, call your new function.

In addition, enable printing and use a line like the following to check that you are reading from your
sensors and outputting forces correctly:

serial.printf("%lf, %lf, %lf, %lf, %lf, %lf, %lf, %lf\r\n", getThetaA(),
getThetaB(), getRx(), getRy(), TorqueMotor1, TorqueMotor2, ForceX, ForceY);

4. Place your Haplink in the “zero” position. This is where Sector A is centered and Sector B is at an
angle of -40 degrees. (This is the default value of THETA_B_OFFSET in the main.h file, designed so
that you will start inside the virtual box that you will render in the next step!) Note that the pointy
corner on the base (see image below) indicates the angle you are at, and the centerline of Sector B is
zero degrees. Each tick mark on Sector B corresponds to 10 degrees. Rotating Sector B clockwise
gives more negative values of theta_b.

Compile and download this program to your board when the Haplink is in this correct starting
configuration, and then check the Serial Monitor in the Arduino environment to be sure that the
measurements and outputs make sense.

5. Now that you know that to expect, place your Hapkit handle in the vertical position and plug in the
motor power supply (12 V). Hold onto the handle. You should be able to feel a weak force at a 45-
degree angle, since you requested 0.5 N in the x-direction and 0.5 N in the y-direction. You can
increase the force values and change the relative x and y values as needed to make sure you
understand the force directions. Make a note about which directions are positive/negative x, and
which are positive/negative y based on the forces you feel, and make sure they correspond to the
measured positions you view in the Serial Monitor.

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON:
• Which directions are +x, -x, +y, and –y.

pointer	

0o	-20o	
-40o	

Centerline	
of	sector	
pulley	

Step 2: Render the Inside of a Vir tual Box
As described in lecture, create a virtual box centered at (26 mm, 90 mm) with a width of 10 mm and a
height of 10 mm. You will render a scenario in which the user is stuck inside the box. The suggested value
for K_WALL_X and K_WALL_Y is 500 N/m.

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON:
• Nothing, just make sure that you (and Allison) can feel the box.

Step 3: Render the Outside of a Vir tual Circle
As described in lecture, create a virtual circle (really a disk) centered at (-9 mm, 90 mm) with a radius of 30
mm. You will render a scenario in which the user is stuck outside the circle. We suggest a value of 500 N/m
for the stiffness of the circle. With the location and size of the circle given, you can use the same
THETA_B_OFFSET as in the parts above.

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON:
• Nothing, just make sure that you (and Allison) can feel the circle.

Step 4: Render Something Else

Try something new! Make sure that you have a starting position that will not generate a large force as soon
as the program starts running.

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON:
• Prepare to explain to Allison what you aimed to render, before she tries it.

