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Lab Assignment 5: 
Haptic Rendering 

 
In this week's lab assignment, you will modify your program from last week in order to achieve rendering of  
compelling haptic virtual environments. This laboratory has several parts: 

• Step 1: Render a virtual spring 
• Step 2: Render a virtual wall 
• Step 3: Render a virtual damper 
• Step 4: Render a virtual texture using the damping approach 
• Step 5: Render something else 

Demonstrate each of  your virtual environments to the instructor. 
 
Step 1: Render a Vir tual Spring 
 
In this part of  the lab, you will program a virtual spring. For this example, we will provide the code you need 
to write. (In the later steps, we will provide only some or none of  the code you need to write.) 

 
Here are the substeps to follow for this part of  the lab: 

1. Begin with your code from the previous lab, but in comment out the sprintf statements in 
main.cpp whenever you will have power to the motor. You can use sprintf for debugging, but do 
not do this when you are powering the motor because it will cause poor quality (or even unstable!) 
haptic rendering. Also in main.cpp, comment out your function calls from previous labs (those that 
blink the LED and output a constant force). 

2. You will add all your haptic rendering code to the file haplink_virtual_environments.cpp. Note 
that constants such as K_SPRING are defined in the corresponding header file, 
haplink_virtual_environments.h. The numbers given for these constants are ones that work well, 
but you should start with much lower constants until you are sure that your rendering is working. 

3. To render a virtual spring, add the following code to the function hapkitRenderSpring in 
haplink_virtual_environments.cpp. 
    ForceX = -K_SPRING*(xH/1000); //convert xH to meters 

    TorqueMotor1 = -((R_MA/R_A) * R_HA) * ForceX; 

    TorqueMotor1 = TorqueMotor1*0.001; //convert units 

    outputTorqueMotor1(TorqueMotor1);     
 

Also, start by defining K_SPRING as 5.0, instead of  the default 100.0. Use “.0” in all such 
definitions in order to ensure that the C++ compiler knows that you want to perform floating-point 
calculations. 

Then, call the hapkitRenderSpring in the appropriate place in main.cpp. 

4. WAIT!! Before you download this new program to your Hapkit, let's think a little about what you 
should feel from this rendering algorithm: 

• This code should look familiar – it is simply Hooke's Law as described in lecture. The 



constant K_SPRING is used to define the virtual spring stiffness in units of  Newtons per 
meter. Then the force is computed by multiplying this desired stiffness by the position of  
the handle calculated in haplink_position.cpp (in units of  meters).  

• Note that 10 N/m is not a very high stiffness – if  you stretched the spring a whole meter, 
then you would feel 10 Newtons. Since your Hapkit handle only moves a fraction of  a meter, 
the force you feel (if  any) will be very low. 

• If  you deflect the handle 10 mm (= 1 cm = 0.01 m), you would feel 0.01*10 = 0.1 N. 
Remembering the range of  forces you felt in Lab 4, this is on the edge of  what you will be 
able to feel. 

5. Now that you know that to expect, place your Hapkit handle in the vertical position and plug in the 
power supply to the motor. (Note that if  your board has loaded onto it code that outputs a force 
from the last lab, that code will still be there! So in case you left the board loaded with a high force 
output program, hold on to the handle.) Download your code while holding onto the handle. 

6. You should be able to feel a very weak virtual spring. Try moving the handle to its extreme positions 
(to the left and right), and see if  you can feel a force trying to bring the handle back to center when 
you get to the extremes. You can also release the handle and see if  it returns to center. If  you can't 
feel anything at all, try doubling the spring stiffness (K_SPRING) and see if  you can feel it then. If  
you can't feel anything at this point, it's time to debug or ask for help. Note that every time you 
change the value of  K_SPRING, you will need to re-upload your sketch in order to feel the new value. 

7. Assuming that you have successfully rendered a weak spring, let's kick it up a notch. Let’s get the 
stiffness high enough such that, when you pull the handle to one side and release it, the handle 
oscillates a few times. This is called an underdamped response, and will only occur when the virtual 
stiffness is high enough relative to the natural friction (damping) in the device. Increase K_SPRING 
until you find a value that allows you to get a similar oscillatory behavior and write it down. Note 
that there are many values of  K_SPRING that will give this response – just pick one that you like. 

8. Now let's go even further. Increase K_SPRING until it is much stiffer. You should be able to get 
spring values on the order of  hundreds of  Newtons per meter. At some point, the spring will no 
longer feel compelling because either (1) the capstan drive slips as soon as you try to move the 
handle any significant distance, (2) the motor "saturates", that is, there is not sufficient current to 
allow the motor to output the commanded force, or (3) the system is unstable. If  slip occurs, you 
will need to press the physical reset button on the corner of  your board, and center the handle 
(make it vertical) before trying again. That's because the position sensing system will no longer have 
an accurate measure of  the handle position due to the encoder’s relative position sensing. So if  slip 
or saturation seems to be occurring, lower K_SPRING until you get the highest K_SPRING that still 
seems to perform well, and write it down. Note that there are many values of  K_SPRING that will be 
appropriate – pick one that you like. 

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON: 
• The oscillatory K_SPRING in units of  N/m you found in Step 1.7. 
• The maximum reasonable value of  K_SPRING in units of  N/m you found in Step 1.8.  

 
Step 2: Render a Vir tual Wall 
 
The virtual wall is a basic building block for many virtual environments, and we will render a simple version 
in one dimension. 
 
Here are the substeps to follow for this part of  the lab: 

1. Comment out the hapkitRenderSpring function call you added in Step 1, and add the function 



call hapkitRenderVirtualWall. 

2. Decide a location (X_WALL) for your virtual wall, which should be noticeably different from zero 
(when the handle is vertical). However, let's make sure that it is close enough to the center of  the 
workspace that you don't miss it at the edge of  the workspace.  

Before you write any code, think about the logic of  the wall rendering algorithm. You will need to 
check whether xH is beyond the boundary of  the wall. If  so, compute ForceX based on the stiffness 
of  the wall. If  xH is not inside the wall, the ForceX should be zero. There is slight complication in 
that you must also decide which side of  the wall is the solid side, and which is the free space. See the 
figure below for an example where X_WALL is at the same place, but the "solid area" of  the wall is on 
either side of  the boundary. 

The variable K_WALL is a wall stiffness that you define. You can start with the same value you used in 
Step 1.8 for K_SPRING. 

 

 

3. Now write code to implement this algorithm in your haplink_virtual_environments.cpp file, in 
the function hapkitRenderVirtualWall. You can copy your virtual spring code as a starting 
point, and also consider the “if” statement from last week’s force output lab. 

Note that the values of  the constants K_WALL and X_WALL are defined in 
haplink_virtual_environments.h. Modify the default values provided there. 

4. Upload your program to be board, and see if  you feel a compelling wall as you move around the 
Hapkit handle. By "compelling", we mean a wall that, when you make contact with it, feels quite stiff  
and nearly impenetrable. Increase K_WALL as much as possible to achieve this. Since we don't expect 
users to push into the virtual wall very far, I am not so concerned about saturation here. However, 
you don't want the motor to slip upon contact. Also, when you select X_WALL, you pick a value (and 
which side of  the wall is "solid") such that you do not start out inside the wall when the handle is 
vertical. (Otherwise, you will feel a large force as soon as your program has been uploaded, and this 
discontinuity is likely to make your capstan drive slip.) Write down your favorite wall position, 
X_WALL, and stiffness, K_WALL.  

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON: 

• The position of  the wall X_WALL in units of  mm you decided to use in Step 2.4. 
• The value of  K_WALL in units of  N/m you decided to use in Step 2.4.  



 
Step 3: Render a Vir tual Damper   
 
A damper outputs a force proportional to velocity. This is in contrast to the spring, which outputs a force 
proportional to position. 

 

Here are the substeps to follow for this part of  the lab: 

1. Comment out the hapkitRenderVirtualWall function call you added in Step 1, and add the 
function call hapkitRenderLinearDamping. 

2. As discussed in lecture, we have already provided code to calculate the velocity, dxH. Note: There are 
many other ways of  computing filtered velocity; this is just one that works well for the Hapkit. 

3. Now, add the following code to the function hapkitRenderLinearDamping: 
ForceX = -B_LINEAR*dxH/1000; 

TorqueMotor1 = -((R_MA/R_A) * R_HA) * ForceX; 

TorqueMotor1 = TorqueMotor1*0.001; //convert units 

outputTorqueMotor1(TorqueMotor1); 

4. Start with a low value of  B_LINEAR and increase the value until you get a significantly damped 
environment – one that feels very different from the natural Hapkit dynamics. But not so large that 
it feels gritty (caused by some remaining noise on the velocity signal that is amplified when you 
multiply it by a large damping coefficient). Choose your favorite value of  B_LINEAR and write it 
down. 

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON: 
• Your favorite value of  b_damper in units of  Ns/m you found in Step 3.4. 

 
Step 4: Render a Vir tual Texture   
 
Now you will render a virtual texture a series damping fields. 

 

Here are the substeps to follow for this part of  the lab: 

1. Comment out the hapkitRenderLinearDamping function call you added in Step 1, and add the 
function call hapkitRenderTexture. 

2. From the damper rending you did in the last step, you already have a calculation of  velocity. Now 
you need to add code to render damping only when the handle position is within a damping field. 
For your first texture, use a series of  damping fields each with a width of  0.005 m (0.5 cm), and a 
separation between the damping fields of  the same distance. See the diagram below for the 
definition of  when the handle position (xH) is within in a damping field. This diagram only shows 
the central area of  the Hapkit workspace; you should render texture all the way to the edge of  your 
workspace. 



 
The variable TEXTURE_DAMPING is a damping value that you define in 
haplink_virtual_environments.h. You can start with the same value you used in Step 3. 

Before you write any code, think about the logic of  the texture rendering algorithm. You will need to 
check whether xH is inside any of  the damping fields. If  so, compute ForceX based on the damping 
equation. If  xH is not within a damping field, the ForceX should be zero. 

3. Now write code to implement this algorithm in your haplink_virtual_environments.cpp file, in 
the function hapkitRenderTexture. 

Hints: If  you are an experienced programmer, implementing this algorithm will likely be 
straightforward. However, if  you are unfamiliar with programming, and in particular the Arduino 
syntax, here are some useful tips: The most straightforward (if  not elegant) method is a brute-force 
check to see if  xH is within a damping field. For the rightmost damping field in the diagram above, 
the code could look like this: 
if ((xH > 0.02) && (xH < 0.025)) { 

     ForceX = -TEXTURE_DAMPING*dxH/1000; 

} else { 

     ForceX = 0; 

}  

The && is a logical "and", so in this example the position of  the handle must be between 0.02 and 
0.025 m. To do additional checks for the other damping fields, you could include similar code for 
each damping field in the same if  statement, and use a logical "or" (symbol: ||) to allow the ForceX 
calculation to be active for all of  the different damping fields. There are more elegant/efficient ways 
of  doing this -- feel free to come up with a different approach. 

4. Download your program to the board, and see if  you feel a compelling texture as you move around 
the Hapkit handle. By "compelling", we mean a texture that could plausibly represent a patterned 
surface (in this case, a high-spatial-frequency grating) in the real world. Adjust the width of  your 
damping fields and the value of  TEXTURE_DAMPING until you have virtual texture that you find 
compelling. For simplicity, please keep the distance between the damping fields the same as the 
width of  the damping fields, and use the same width for all damping fields. Write down your favorite 
damping field with and value of  TEXTURE_DAMPING, which you will submit with your data. 

WHAT TO RECORD BEFORE DEMONSTRATING TO ALLISON: 
• The width of  the damping fields in units of  m you decided to use in Step 3.4. 
• The value of  TEXTURE_DAMPING in units of  Ns/m you decided to use in Step 3.4. 

 
Step 5: Render Something Else  

If  you complete the previous steps and have time left during the lab session, try something new! 


