Math 220B - Summer 2003
Homework 6 Solutions

1. Consider the Neumann problem,

—-Au=f 2€Q
%:g x € 0f)

Assume the compatibility condition holds. That is,

_/ng(x)dxzégg(x)dS(x).

Just as the Green’s function allowed us to find a representation formula for solutions
to Poisson’s equation on a bounded domain €2, here we construct a Neumann function
to derive a representation formula for the Neumann problem. Let N(z,y) be defined
as follows. Let _

N(z,y) =2y —xz)—h"(y) Vye

where h*(y) is a solution of

()= 2(y—z)—C  Vyedn

{ Ah(y) =0 Yy € Q

for some appropriately chosen constant C'. (In part (b), you will determine the neces-
sary constant for a given region (2. For now, you may assume C' is arbitrary.)

(a) Use N(z,y) to write a solution formula for

—Au=f xeQ
%:g x € 0N

in terms of f,g, and N. (Note: As we know, Poisson’s equation with Neumann
boundary conditions is only unique up to constants. Therefore, adding any con-
stant to your solution formula will also give you a solution.)

Answer: From our work in class, we know that for any u € C?(2), u has the
following representation,

U(I)——/Qﬁu@(x—y)dw/a ?Cb(x—y)ds(y)—Aﬂug—@(ﬂf—y)ds(y}

q OV 1%

If A% is any smooth function on €2, we know from lecture that

~ ~ Ou~ Oh®
/ Ayh* (y)uly) dy = / Auh®(y)dy — [ ——h"dS(y) + / u——dS(y).
Q Q o0 OV oo OV



Now assuming that h? is a solution of the boundary-value problem for each x € €2,
we see that

0—/Auh$dy /8 U ds(y) + /Qu{g—f(x—y)—C} ds(y).

Adding this equation to the first equation above, we have
u(r) = —/ Au[®(z—y)=h*(y)] dy+ | =[P(z—y)=h"(y)]dS(y)=C [ udS(y).
Q o0 OV bGl9)
By definition of the Neumann function N(z,y), we have
0
u(z) = — / AuN(z,y) dy +/ SEN (2, y) dS(y) — 0/ dS(y).
Q aa OV a0

Therefore, if u is a solution of Poisson’s equation on a bounded domain 2 with
Neumann boundary conditions, then © may be written as

0= [ N+ [ atiNe.pdse) ¢ | uaso)

o0

In the definition of Ex, what must the constant C' be? Explain.

Answer:  Using the above representation formula, let u = 1 on the closed,
bounded domain 2. Therefore, Au = 0, du/0v = 0 and u = 1 on the boundary.
Therefore, by the above representation formula, we have

u(z) = _C/aﬂ dsS(y).

Therefore,
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Find the Neumann function for R} .
Answer: In the case of 2 = R}, C' = 0. Therefore, to find the Neumann

function N(z,y), we need to find a corrector function %""(y) for each x € R} such
that

A h"”/’( )=0 Vy € R}
{ Pe(y)=L2(y—2) Vy€ORL
Now on 9R", 22 (y — z) = —%(y —z). As we know,
0P Tn — Yn
95, " natwly - 2
For y € OR", y,, = 0. Therefore
0o —Zn
“on YT ety — ol



We know that ®(y — 2*) is harmonic in y in R"} as long as z* ¢ R. So, we
would like to choose our corrector function h*(y) = ®(y — 2*) for some x*. Using
the ideas for the Green’s function, we let x* = (z1,...,2,_1, —2,) (the reflection
point of x). In order to satisfy our boundary condition, we need to define %x(y)
as follows. Let N

h(y) = =@y — 7).

Therefore, A% is harmonic in yforally € R}, and % = W Therefore, he

defined above is the corrector function, and consequently, the Neumann function

N(z,y) =y —x) + Py — 7).

(b) Use the Neumann function for R” to find the solution formula for

du

Au=0 zecRY}
o=y xr € ORY.

Answer: Using the representation formula from the previous problem, we see
that u is given by

ulz) = /a )Ry )+ By — )] dS(y).

n
+

3. Let Q be an open, bounded subset of R"® with C? boundary. Let h be a continuous
function on 0€). Let ® be the fundamental solution of Laplace’s equation on R™. Define
the single-layer potential with moment h as

() = — /a h{w)oly - 2)dS().

(a) Show that @ is defined and continuous for all z € R".

Answer: First, for x ¢ 09, ®(z — y) is smooth, and, 992 is a closed, bounded
set. Therefore, u(z) is clearly defined.

Now, we consider x € 0f2.

Counsider the case n = 2.

o)l =[5 [ nmle— sl dsts)

[ ke ylast|
o0

Now away from the singularity, clearly that part of the integral is finite. Therefore,
we just need to show that

6 [ wle-yldst)
B(z,6)NoN

3
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is finite. Without loss of generality, we may assume z = 0. In addition, using
the fact that 9 is C?, we have a function f : R — R such that B(z,d) N9 =
{(z1, f(x1))} (assuming § is sufficiently small). Therefore, (*) can be written as

)
/ (. SV TPl don

But f is a C? function implies f’ is a C! function, which implies f'(y;) = f/(0) +
f"(C)yr. Therefore, \/1+ [f(y1)]? < /1 + |y1]2. Consequently, we have

§ §
/61n|(y1,f(y1))l L+ [f(y) P dyr < /6lnl(y1,f(y1))|\/1+ [y1|? di
)
< [ 1) VT TP

for any € > 0. But,

1) )
C/sl(y17f(y1))|‘5\/1+ 1 |? dyr < 0/5|y1l‘6\/1+ Y1 |? dys

5
< C/ lya| " dys < C,
-5

as long as € < 1.
Therefore, T(x) is defined for all z € Q C R2.

Next, we look at n > 3. Then
_ 1 / h(y) ‘
u(x)| = dS(y
T e =200 Jon T — g2 W)

1
Sc\h(y)’Lw(Q)/ 5 dS(y),
20 | Yl

Q | T

using the fact that 9€) is an n — 1-dimensional surface in R".

It remains only to show that %(x) is continuous. Clearly, for z € Q or 2 € R™\Q,
u(x) is continuous, because ®(z — y) is smooth. Therefore, we only need to
consider the case when x € 0.

Consider zy € 0€2. We need to show that for all ¢ > 0 there exists a 6 > 0 such
that |u(x) — u(zg)| < € for |z — x| < §. Let B(xo,7y) be a ball of radius v about
zo. Let B, = 0Q N B(xo,7). Let A= 0Q\{0Q N B(xg,7)}. Write

() — lzo) = /a h)[B( = ) ~ an — )] dS(0)
_ /B h(y)[®(x — ) — B(zo — )] dS(y)

— /A h(y)[®(z — y) — ®(zo — y)] dS(y).



As shown above, u(x) is defined for all x € R™. Therefore, the first term is defined.
We claim that it can be made arbitrarily small by choosing v arbitrarily small.
In particular,

/B h(y)[®(x —y) — D(zo — y)] dS(y)

~

< /B h(y)®(x — y) dS(y)

~

T /B h(y)B(zo — ) dS(y).

Y

Now for x ¢ 092, ®(x — y) is bounded, and, therefore we have
| ot -pasw <o [ asw) <
B, B,
by choosing « sufficiently small. Now for x € 9, we use the fact that 9 is C?,
and, therefore, can be written as a C? function locally. Without loss of generality,

we may assume x = 0. There exists a function f : R"! — R and some r > 0
such that 90N B(0,7) ={y = (y1, -+ Yn—1, [ (Y1, - -, Yn_1))}. Therefore, letting

y=(Y1,---,Yn-1), we have

/B h(y)®(x — ) dS(y)

< W=, [ @WISH)

<C /B 12U @IV VTG b

where E(O,V) is the ball of radius v in R*~!. Using the fact that f is a C?
function, we have |V f| < C. But,

[ B((F. f(@))|dF = O(+)

B(07)
can be made arbitrarily small by choosing v sufficiently small. I.e. in dimensions
n > 3, we have

_ [ 1 )
/E(o,w) 24, F@) = C/o /85(0,@ |y, f(y))[" 45(8) 4

K 1
= C/ / dS(y) dr
o Jomon 07 TR B
Y
< C'/ dr = Cy.
0

Then for v chosen appropriately small, we can make the second term small by
choosing § < v appropriately small and using the fact that ®(z —y) — ®(zo — y)
is uniformly continuous in y. We have

J I R ) ds<y>\ < 19z — y) - Do — y)|ea

IN
N |

for |x — z9| < d < where § is chosen appropriately small.
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(b) Show that Au(x) =0 for x ¢ 0f.

Answer: &(z —y) is smooth for x # y, and as discussed above, u(x) is defined
for all x € R™. Therefore, for x ¢ 02,

Aji(r) = A, /8 h()@(x ~ ) dS()
= - /BQ hy) Az ®(z —y) dS(y) = 0.

4. Let Q be an open, bounded set in R™ with smooth boundary. Let Q¢ = R™\Q. Consider
the exterior Neumann problem,

(%) Au=0 2€Q°
%:g x € 00°.

Assume ¢ satisfies the condition,
/ g(x)dS(z) =0. (%)
o0

(Note: Recall: This is not a necessary condition for solvability of the exterior Neumann
problem.) Suppose a solution u of (*) is given by the single-layer potential,

ul) = - / h()(e =) dS(o)

where h satisfies the integral equation
1 0b(x —y)
g(z) = Fh(z) — /aQ hy)—g,— 45@).

(a) Show that if g satisfies the condition (**), then

| mwdsw =o.
o0

Answer: We integrate the integral equation for h with over 0f). In particular,
we get

0= /8 () dS(a)



where we have used Gauss’ Lemma which states that for y € 09,

0b(x —y) 1
—/{99 v dS(z) = 5

(b) Show that the solution w will have decay rate O(]xz|'™") In particular, show
lu(x)| < Clz|*=". Hint: By (a), write u(z) = — [, h(y)[®(z — y) — ©(x)] dS(y).
Answer: If g(x) satisfies the extra condition (*) above, then from (a), we know

/8(2 h(y)dS(y) =0,

and, therefore, we can write
u(x) = /a h()(e— ) dS(y) - /a h[B(e =) — (@) dS ()

By the mean value theorem, there exists a point £* on the line segment between
xr —y and x such that

O(z —y) — (x) = VO(z7) - (—y).
By calculating V®(x), we see that
C

G

Vo(z) =O(jz["™"),

using the fact that x* is between x — y and x. Therefore,
@)l < [ @lie =) = o) as()

<l [ V8@l aso)
< Ol
This gives us a decay rate O(|z|*™").

5. Let Q be an open, bounded subset of R™. Let Q¢ = R™\Q. Prove there exists at most
one solution u which decays to 0 as |z| — 400 of the following

Au=f x € QF
u=g x € 05

Answer: Suppose there exist two solutions u and v. Define the set Qf, = Q°NB(0, R).
Let w = u — v. Now using the fact that |ul,|v| — 0 as |z| — +o0, we see that for all
€ > 0 there exists an R > 0 such that |w(x)| < € if |z| > R. Let ¢ > 0 Fix R such that
|lw(x)| < eif |z] > R. Then w is a solution of

Aw=0 x€Qf
w=0 x € 0N
lw| < e z € 0B(0, R).



Therefore, by the maximum principle for harmonic functions,

HlEClXU) = maxw < €.
ray c
(9} NG

Similarly, defining w = v — u, we conclude that

maxw < €.
ﬁc
R

Therefore, we conclude that |u — v| < € on ﬁ;. Since this is true for all € by choosing
R sufficiently large, we conclude that u = v.



