Math 220B - Summer 2003
Homework 2 Solutions

1. (a) Compute the Fourier transform of xf in terms of f
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(b) Compute the Fourier transform of ze .

Answer: From part (a),
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Recall f(z) = e~ implies f(£) = \/%6*52/46. Therefore, e~%* = \/Lﬂe*g/“.
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2. Use the Fourier transform to show that the solution of the inhomogeneous heat equation
with zero initial data,

up — kug, = f(x,t) —00 < x < oo,t>0
(,0)=0 —00 < T < 00



is given by

e~ @RS £y 5) dy ds.
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Answer: We take the Fourier transform with respect to the spacial variable only.
iy = kg, + [z, 1)
— Uy + k% = f(,t).

We solve this first-order ODE using the integrating factor ¢***. Our solution is given
by
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Now, u(z,0) =0 = u(£,0) = 0. Therefore,
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Using the fact that v = @, we have
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Notice that the inner term in brackets is just the Fourier transform g(y — z) where
g(€) = e #(=%) From lecture, we know that for & € R,
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Using this fact, we can conclude that for y, x € R,
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3. Use the Fourier transform to solve

U — tgy =0 —o0o < x<oo,t>0
u(z,0) = ¢(xr) —oo< <00

Answer:
U — MUy =0 = Uy — tlly, =0

— U — t(i€)*u =0
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Solving this first-order ODE, we have

e, t) = Ce V€2,
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The initial condition u(z,0) = ¢(z) = u(&,0) = ¢(§). Therefore,

U, t) = pe)e™E,

Next, recall that
fxg=(2m)2f()5(8).
Therefore,
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Let f = ¢ and G(€) = e /2 We need to compute g(x). Recall that
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4. (a)

Consider the heat equation on a half-line with Dirichlet boundary conditions

U — kg, =0 0<zx<oo,t>0
u(z,0) =¢(x) 0O0<zx<o0
u(0,) =0 t> 0.

Solve for u(x,t).
Answer: Let

_[é@) x>0
Goda(w) = { —¢(—x) =<0
Consider the initial-value problem

{vt—kvm:O —o0o < x <oo,t>0

v(x,0) = Pogal).
We know the solution of this initial value problem is given by
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Using the fact that ¢,qq is an odd function and e~V* /4t ig an even function, we see
that

v(x,t) =

1 e
v(0.7) = varkt / eV M Goaaly) dy = 0.

Therefore, letting u(x,t) = v(z,t) for x > 0, we see that u(z,t) is a solution of the
heat equation on the half-line with Dirichlet boundary conditions on the half-line.
We conclude that

1
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u(w,t) = / eV G a(y) dy.

Consider the heat equation on a half-line with Robin boundary conditions

Up — klgy =0 O<z<oo,t>0
(¥) ¢ u(z,0) = o(x) 0<z<o0
uz(0,t) — hu(z,t) =0  t>0.

Solve this initial value problem as follows. Assuming u is the solution of (*),
introduce a new function v such that v(x,t) = u,(z,t) — hu(z,t).

i. Determine the initial/boundary value problem that v satisfies.

Answer:
v — kg, =0 0<x<oo,t>0
o(2,0) = ¢/(x) — hé(x)
v(0,t) = 0.




ii. Solve for w in terms of v.
Answer:

—hx hx

Uy —hu=v = (e "u), =e v

— e "y :/ e Mu(y, t)dy + C.

Therefore,

u(z,t) = ehx/ e Mu(y,t)dy + e C

for any a and C'. In order that the initial condition is satisfied, choose a and
C' such that u(z,0) = ¢(x). (There is not a unique solution to this ODE.)
For example, if we assume that ¢ is bounded, then let C'= 0, a = co. In this
case, we see that if a = oo (for h > 0), then

u(z,0) = e /ﬂﬁ e M@ — ho) dy
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= [ Mg — holdy + e o)

= ¢().
Similarly, if h < 0, then let a = —o0.

5. Consider the initial/boundary-value problem

Up — kg = 0 O<zx<l,t>0
(xx) u(z,0) = ¢(x) O<z<l
uw(0,t) =0=wu(l,t) t>0.

Let ¢ert(x) be the extension of ¢ to all of R such that ¢, is odd with respect to = = 0
and ¢, is 2[-periodic. That is,

bonn(z) = { o(x) 0<z<l

—¢(—x) —l<zr<0
and ¢ is 2[-periodic.
(a) Consider the initial-value problem

vt — kvgy =0 —00 < x < 00,t >0
U(SL’,O) = (bezt(x) —0o0 < r < 0oQ.

Write the solution formula for v. Show that if u(z,t) is defined to be v(x,t) for
0 <z <[, then u will satisfy (**).

Answer:
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We know v satisfies the heat equation on R, and, therefore, u will satisfy the heat
equation on {(x,t) € Rt x R}, Also, v(x,0) = ¢ere() implies v(z,0) = ¢(z)
for z > 0, and, therefore, u(z,0) = ¢(z) for x > 0. Therefore, the only thing we
must check is that u(0,¢) = 0 = u(l,t). First, by definition of v, we see that

1 > 2

oY /4kt o dy.
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Now using the fact that @eg(y) is odd with respect to y = 0 and e ¥*/4 ig
even with respect to y = 0, we conclude that their product is odd, and, thus,
u(0,t) = 0.
Second, we see that

u(0,t) =
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By the change of variables ¥y = y — [, we can rewrite

(1) = ——
u(l,t) =

VArkt
We note that ¢.:(y) is odd with respect to y = I. Therefore, ¢e.i(y + 1) (which
is the function ¢, (y) shifted to the left by [ units) is odd with respect to y = 0.
Also, as stated above, e v*/%t ig even, and, therefore, the product of these two
functions is odd, which implies that u(l,t) = 0.

Assume that

u(l,t) =

/ eI (5 + 1) dF.

o(x) = ;An sin (?w) for 0 <z <1,

where
(¢, sin (%a:»

(sin (%%z) ,sin (%))

(That is, assume that the Fourier sine series for ¢ converges to ¢.) Note that for
Oert defined above,

Peat(x) = ZA” sin (?w) for —oo <z < o0.

A, =

n=1

Using the solution formula found in part (a), show that

vz, t) = Ansin (nwa> e~knim/E

with A, defined above. (Consequently if u(z,t) = v(z,t) for 0 < x <[, then u has
this form. In particular, we have justified the separation of variables technique.)
Answer: By the formula in part (a), we know that
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Using the facts stated above, we have that

where A, is defined above. Plugging this into the formula for v, we have that
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We look at the first term on the RHS above. Consider
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Consider the exponent —(y — x)?/4kt + inmy/l. We will complete the square.
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Therefore,
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Letting z = (y — x)/V4kt, we see that
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Doing a similar analysis for the term involving e=™"*/!, we conclude that
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