Comments on Rayleigh-Ritz Approximation and Minimax Principle

Let $\left\{w_{1}, \ldots, w_{n}\right\}$ be n linearly independent trial functions. Let $A=\left(a_{j k}\right), B=\left(b_{j k}\right)$ where $a_{j k}=\left\langle\nabla w_{j}, \nabla w_{k}\right\rangle$ and $b_{j k}=\left\langle w_{j}, w_{k}\right\rangle$. Consider the equation

$$
\operatorname{det}(A-\lambda B)=0
$$

Assume $\lambda_{1}^{*}, \ldots, \lambda_{n}^{*}$ are the n real roots of this equation. We know that there exists a set of vectors $\left\{v_{j}\right\}$ which form a basis for \mathbb{R}^{n} such that

$$
A v_{j}=\lambda_{j}^{*} B v_{j} \quad j=1, \ldots, n
$$

and the $\left\{v_{j}\right\}$ are mutually orthogonal with respect to B; that is,

$$
B v_{j} \cdot v_{i}=0 \quad i \neq j .
$$

Let

$$
X_{i} \equiv \operatorname{span}\left\{v_{1}, \ldots v_{i}\right\}
$$

Lemma 1. For $\left\{w_{1}, \ldots, w_{n}\right\}$ a set of linearly independent trial functions and $A, B,\left\{v_{j}\right\}$ defined as above, the $i^{\text {th }}$ root of the equation $\operatorname{det}(A-\lambda B)=0$ satisfies

$$
\lambda_{i}^{*}=\max _{c \in X_{i}, c \neq 0} \frac{A c \cdot c}{B c \cdot c}
$$

Proof. First, we note that

$$
\begin{aligned}
\lambda_{i}^{*} & =\frac{A v_{i} \cdot v_{i}}{B v_{i} \cdot v_{i}} \\
& \leq \max _{c \in X_{i}} \frac{A c \cdot c}{B c \cdot c} .
\end{aligned}
$$

Next, let $c \in X_{i}$. Then $c=\sum_{j=1}^{i} c_{j} v_{j}$. Therefore,

$$
\begin{aligned}
\frac{A c \cdot c}{B c \cdot c} & =\frac{A \sum_{j=1}^{i} c_{j} v_{j} \cdot \sum_{j=1}^{i} c_{j} v_{j}}{B \sum_{j=1}^{i} c_{j} v_{j} \cdot \sum_{j=1}^{i} c_{j} v_{j}} \\
& =\frac{\sum_{j=1}^{i} c_{j} \lambda_{j}^{*} B v_{j} \cdot \sum_{j=1}^{i} c_{j} v_{j}}{\sum_{j=1}^{i} c_{j}^{2} B v_{j} \cdot v_{j}} \\
& =\frac{\sum_{j=1}^{i} c_{j}^{2} \lambda_{j}^{*} B v_{j} \cdot v_{j}}{\sum_{j=1}^{i} c_{j}^{2} B v_{j} \cdot v_{j}} \\
& \leq \lambda_{i}^{*}
\end{aligned}
$$

Therefore, taking the maximum of both sides over all possible $c \in X_{i}$, we get the desired result.

Remark. Using the fact that

$$
\frac{A c \cdot c}{B c \cdot c}=\frac{\left\|\nabla\left(\sum_{j=1}^{n} c_{j} w_{j}\right)\right\|_{L^{2}}^{2}}{\left\|\sum_{j=1}^{n} c_{j} w_{j}\right\|_{L^{2}}^{2}}
$$

we have

$$
\lambda_{i}^{*}=\max _{c \in X_{i}, c \neq 0}\left\{\frac{\left\|\nabla\left(\sum_{j=1}^{n} c_{j} w_{j}\right)\right\|_{L^{2}}^{2}}{\left\|\sum_{j=1}^{n} c_{j} w_{j}\right\|_{L^{2}}^{2}}\right\} .
$$

Lemma 2. The $i^{\text {th }}$ Dirichlet eigenvalue is given by

$$
\lambda_{i}=\min \max _{c \in X_{i}, c \neq 0}\left\{\frac{\left\|\nabla\left(\sum_{j=1}^{n} c_{j} w_{j}\right)\right\|_{L^{2}}^{2}}{\left\|\sum_{j=1}^{n} c_{j} w_{j}\right\|_{L^{2}}^{2}}\right\}
$$

where the minimum is taken over all possible sets of linearly independent functions $\left\{w_{1}, \ldots, w_{n}\right\}$.
Remark: From the above remark, we see that

$$
\lambda_{i}=\min \lambda_{i}^{*}\left(w_{1}, \ldots, w_{n}\right)
$$

where the minimum is taken over all possible sets of linearly independent trial functions.
Proof. Fix $\left\{w_{1}, \ldots, w_{n}\right\}$. Choose a linear combination $w=\sum_{j=1}^{n} c_{j} w_{j}$ such that

- $c=\left(c_{1}, \ldots, c_{n}\right) \in X_{i}$
- w is orthogonal to the first $i-1$ eigenfunctions (denoted u_{i}).

The first condition implies

$$
c \cdot B v_{j}=0 \quad j=i+1, \ldots, n
$$

The second condition implies

$$
\left\langle w, u_{j}\right\rangle=0 \quad j=1, \ldots, i-1
$$

In particular, we have $n-1$ equations for our n unknowns c_{1}, \ldots, c_{n}. Therefore, such a function exists.

By the Minimum Principle for the $i^{t h}$ eigenvalue, we have

$$
\begin{aligned}
\lambda_{i} & \leq \frac{\|\nabla w\|_{L^{2}}^{2}}{\|w\|_{L^{2}}^{2}} \\
& \leq \max _{c \in X_{i}} \frac{\left\|\nabla\left(\sum_{j=1}^{n} c_{j} w_{j}\right)\right\|_{L^{2}}^{2}}{\left\|\sum_{j=1}^{n} c_{j} w_{j}\right\|_{L^{2}}^{2}} .
\end{aligned}
$$

Taking the minimum of both sides over all possible sets of linearly independent trial functions, we conclude that

$$
\lambda_{i} \leq \min \max _{c \in X_{i}, c \neq 0} \frac{\left\|\nabla\left(\sum_{j=1}^{n} c_{j} w_{j}\right)\right\|_{L^{2}}^{2}}{\left\|\sum_{j=1}^{n} c_{j} w_{j}\right\|_{L^{2}}^{2}}
$$

Next, let $\left\{w_{1}, \ldots, w_{n}\right\}$ be the first n eigenfunctions. Then

$$
\max _{c \in X_{i}} \frac{\left\|\nabla\left(\sum_{j=1}^{n} c_{j} w_{j}\right)\right\|_{L^{2}}^{2}}{\left\|\sum_{j=1}^{n} c_{j} w_{j}\right\|_{L^{2}}^{2}}=\frac{\left\|\nabla w_{i}\right\|_{L^{2}}^{2}}{\left\|w_{i}\right\|_{L^{2}}^{2}}=\lambda_{i} .
$$

Therefore,

$$
\min \max _{c \in X_{i}} \frac{\left\|\nabla\left(\sum_{j=1}^{n} c_{j} w_{j}\right)\right\|_{L^{2}}^{2}}{\left\|\sum_{j=1}^{n} c_{j} w_{j}\right\|_{L^{2}}^{2}} \leq \lambda_{i} .
$$

Consequently, we get the desired result.

