## 1 Introduction

In this course, we study two types of second-order equations: parabolic and elliptic. Recall the following definitions. The order of a partial differential equation is the order of the highest derivative appearing in the equation. Linear, second-order equations for functions of two spatial variables can be written in the following form

$$
\begin{equation*}
a u_{x x}+b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u=g(x, y) \tag{1}
\end{equation*}
$$

where the coefficients $a, \ldots, f$ may be functions of $x$ and $y$. We will focus on the constantcoefficient case. We say an equation of the form (1) is parabolic if $b^{2}-4 a c=0$. We say an equation of the form (1) is elliptic if $b^{2}-4 a c<0$. (If $b^{2}-4 a c>0$, the equation of the form (1) is hyperbolic.)

Through a change of variables all parabolic equations can be reduced to an equation of the form

$$
u_{x x}+\ldots=0
$$

where ". . ." represent lower-order terms. Through a change of variables all elliptic equations can be reduced to an equation of the form

$$
u_{x x}+u_{y y}+\ldots=0
$$

(Ref: See Strauss, Sec. 1.6.)
Consequently, we will study the following two equations: (a) the heat equation (which is parabolic) in one spatial variable,

$$
u_{t}-k u_{x x}=0,
$$

and its higher dimensional analog,

$$
u_{t}-k \Delta u=0 \quad x \in \mathbb{R}^{n}
$$

where

$$
\Delta u=\sum_{i=1}^{n} u_{x_{i} x_{i}}
$$

and (b) Laplace's equation (which is elliptic) in two spatial variables,

$$
u_{x x}+u_{y y}=0
$$

and its higher dimensional analog,

$$
\Delta u=0
$$

Not only do these equations represent typical parabolic and elliptic equations, but they also arise physically. We begin by studying the heat equation.

