
6 Eigenvalues of the Laplacian

In this section, we consider the following general eigenvalue problem for the Laplacian,

{ −∆v = λv x ∈ Ω
v satisfies symmetric BCs x ∈ ∂Ω.

To say that the boundary conditions are symmetric for an open, bounded set Ω in Rn

means that
〈u, ∆v〉 = 〈∆u, v〉

for all functions u and v which satisfy the boundary conditions, where 〈·, ·〉 denotes the L2

inner product on Ω; that is, for any real-valued functions f and g on Ω,

〈f, g〉 =

∫

Ω

f(x)g(x) dx

We note that this definition is equivalent to the definition given earlier for the case when Ω
is an interval in R.

The most common symmetric boundary conditions are the following:

1. Dirichlet: v = 0

2. Neumann: ∂v
∂ν

= 0

3. Robin: ∂v
∂ν

+ a(x)v = 0.

6.1 Application to the Heat Equation

Example 1. Heat Equation on a bounded domain Ω ⊂ Rn,




ut = k∆u x ∈ Ω, t > 0
u(x, 0) = φ(x)
u(0, t) = 0 x ∈ ∂Ω, t ≥ 0.

Using separation of variables, we look for a solution of the form u(x, t) = v(x)T (t), which
leads to the following eigenvalue problem,

{ −∆v = λv x ∈ Ω
v = 0 x ∈ ∂Ω

¦

6.2 Facts on Eigenvalues

Theorem 2. For any of the boundary conditions listed above,

1. All eigenvalues are real.

2. All eigenfunctions can be chosen to be real-valued.
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3. Eigenfunctions corresponding to distinct eigenvalues are orthogonal.

4. All eigenfunctions may be chosen to be orthogonal by using a Gram-Schmidt process.

Proof. Proofs of properties (3) and (4) are similar to the 1-dimensional case, discussed earlier.
For proofs of (1) and (2), see Strauss.

Theorem 3. For the eigenvalue problem above,

1. All eigenvalues are positive in the Dirichlet case.

2. All eigenvalues are zero or positive in the Neumann case and the Robin case if a ≥ 0.

Proof. We prove this result for the Dirichlet case. The other proofs can be handled similarly.
Let v be an eigenfunction with corresponding eigenvalue λ. Then

λ

∫

Ω

v2 dx = −
∫

Ω

(∆v)v dx

=

∫

Ω

|∇v|2 dx−
∫

∂Ω

v
∂v

∂ν
dS(x)

=

∫

Ω

|∇v|2 dx

Therefore,

λ

∫

Ω

v2 dx =

∫

Ω

|∇v|2 dx ≥ 0.

Further, we claim that ∫

Ω

|∇v|2 dx > 0.

We prove this claim as follows. Suppose
∫

Ω
|∇v|2 dx = 0, then |∇v| = 0 which implies v is

constant on Ω. But, by assumption v = 0 on ∂Ω. Therefore, if v is constant on Ω and v = 0
on ∂Ω, then v ≡ 0. However, the zero function is not an eigenfunction. Therefore,

Therefore,

λ

∫

Ω

v2 dx =

∫

Ω

|∇v|2 dx > 0,

which implies λ > 0.

6.3 Eigenvalues as Minima of the Potential Energy

In general, it is difficult to explicitly calculate eigenvalues for a given domain Ω ⊂ Rn. In
this section, we prove that eigenvalues are minimizers of a certain functional. This fact will
allow us to approximate eigenvalues for given regions Ω ⊂ Rn.

Consider the eigenvalue problem with Dirichlet boundary conditions,

{ −∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω.

(6.1)
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Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of (6.1).
For a given function w defined on a set Ω ⊂ Rn, we define the Rayleigh Quotient of w

on Ω as
||∇w||2L2(Ω)

||w||2L2(Ω)

=

∫
Ω
|∇w|2 dx∫
Ω

w2 dx
.

Theorem 4. (Minimum Principle for the First Eigenvalue) Let

Y ≡ {w : w ∈ C2(Ω), w 6≡ 0, w = 0 for x ∈ ∂Ω}.
We call this the set of trial functions for (6.1). Suppose there exists a function u ∈ Y such
that u minimizes the Rayleigh quotient over all trial functions w ∈ Y . That is,

m ≡ ||∇u||2
||u||2 = min

w∈Y

{ ||∇w||2
||w||2

}
.

Then m is the first eigenvalue of (6.1). That is, m = λ1 and u is a corresponding eigen-
function.

Proof. Suppose u is the minimizer of the Rayleigh quotient and m is the Rayleigh quotient
of u. That is,

m =

∫
Ω
|∇u|2 dx∫
Ω

u2 dx
. (6.2)

Pick a function v ∈ Y . Let

f(ε) ≡
∫
Ω
|∇(u + εv)|2 dx∫
Ω
(u + εv)2 dx

.

If u minimizes the Rayleigh quotient, then f must satisfy f ′(0) = 0. Taking the derivative
of f , we see that

f ′(ε) =
(
∫
Ω
(u + εv)2 dx)(2

∫
Ω
∇u · ∇v + ε|∇v|2 dx)− (

∫
Ω

2(u + εv)v dx)(
∫
Ω
|∇(u + εv)|2 dx)

(
∫
Ω
(u + εv)2 dx)2

.

Therefore,

f ′(0) =
(
∫
Ω

u2 dx)(2
∫
Ω
∇u · ∇v dx)− (2

∫
Ω

uv dx)(
∫

Ω
|∇u|2 dx)

(
∫
Ω

u2 dx)2
.

Now, f ′(0) = 0 implies
(∫

Ω

u2 dx

)(∫

Ω

∇u · ∇v dx

)
=

(∫

Ω

uv dx

)(∫

Ω

|∇u|2 dx

)
,

which implies

∫

Ω

∇u · ∇v dx =

∫
Ω
|∇u|2 dx∫
Ω

u2 dx

∫

Ω

uv dx

= m

∫

Ω

uv dx,

3



by (6.2). Using the Divergence theorem, we have

−
∫

Ω

(∆u)v dx +

∫

∂Ω

∂u

∂ν
v dS(x) = m

∫

Ω

uv dx.

By assumption, v = 0 on ∂Ω. Therefore, the boundary term vanishes. Therefore,

−
∫

Ω

(∆u)v dx = m

∫

Ω

uv dx

for all v ∈ Y . Now, as this is true for all trial functions v, we conclude that

−∆u = mu,

which means that u is an eigenfunction of (6.1) with corresponding eigenvalue m.
It only remains to show that m is the smallest eigenvalue. Suppose v is another eigen-

function of (6.1) with corresponding eigenvalue λi. We just need to show that λi ≥ m. Using
the Divergence theorem and the fact that v vanishes on the boundary, we have

m =
||∇u||2
||u||2 ≤ ||∇v||2

||v||2 =

∫
Ω
|∇v|2 dx∫
Ω

v2 dx
=
− ∫

Ω
(∆v)v dx∫

Ω
v2 dx

=
λi

∫
Ω

v2 dx∫
Ω

v2 dx
= λi.

Therefore, the theorem is proved.

Theorem 5. (Minimum Principle for the nth Eigenvalue) Fix an integer n ≥ 1. Let vi,
i = 1, . . . , n − 1 be the first n − 1 eigenfunctions of (6.1). Without loss of generality, these
eigenfunctions may be chosen to be orthogonal. Let

Yn ≡ {w : w ∈ C2(Ω), w 6≡ 0, w = 0 for x ∈ ∂Ω, 〈w, vi〉 = 0 for i = 1, . . . , n− 1}.

Suppose there exists a function un ∈ Yn which minimizes the Rayleigh quotient over all
functions w ∈ Yn. That is, suppose

mn ≡ ||∇un||2
||un||2 = min

w∈Yn

||∇w||2
||w||2 .

Then mn is the nth eigenvalue of (6.1). That is, λn = mn and un is an eigenfunction of
(6.1) with eigenvalue mn.

Proof. Suppose un ∈ Yn is the minimizer of the Rayleigh quotient over all functions w ∈ Yn.
That is,

mn ≡ ||∇un||2
||un||2 = min

w∈Yn

{ ||∇w||2
||w||2

}
.

Fixing v ∈ Yn, defining f(ε) as before and using the fact that f ′(0) = 0, we see that

∫

Ω

(∆un + mnun)v dx = 0.
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This is true for any v ∈ Yn. Therefore, we conclude that

∫

Ω

(∆un + mnun)v dx = 0 (6.3)

for all trial functions v which satisfy 〈v, vi〉 = 0 for i = 1, . . . , n− 1.
To conclude that

∆un + mnun = 0,

we need to show that (6.3) is true for all trial functions (not just those trial functions which
are orthogonal to the first n− 1 eigenvalues).

Now let h be an arbitrary trial function. Let

v(x) ≡ h(x)−
n−1∑

k=1

ckvk(x) where ck ≡ 〈h, vk〉
〈vk, vk〉

and the vi are the first n− 1 eigenfunctions. We claim that

∫

Ω

(∆un + mnun)h dx = 0.

We note that

∫

Ω

(∆un + mnun)h dx =

∫

Ω

(∆un + mnun)

[
v +

n−1∑

k=1

ckvk

]
dx

=

∫

Ω

(∆un + mnun)v dx +
n−1∑

k=1

ck

∫

Ω

(∆un + mnun)vk dx.

Now, first, we claim that v is orthogonal to vi for i = 1, . . . , n − 1, and, therefore, the
first term on the right-hand side above vanishes. We prove this claim as follows. Let vi be
an arbitrary eigenfunction for i = 1, . . . , n− 1. Then

〈v, vi〉 =

∫

Ω

vvi dx =

∫

Ω

(
h−

n−1∑

k=1

ckvk

)
vi dx

=

∫

Ω

hvi dx−
n−1∑

k=1

ck

∫

Ω

vkvi dx

=

∫

Ω

hvi dx− ci

∫

Ω

vivi dx

=

∫

Ω

hvi dx−
∫

Ω

hvi dx = 0,

using the definition of ci and the fact that eigenfunctions are orthogonal. Therefore,

∫

Ω

(∆un + mnun)v dx = 0.
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Next, we claim that for all eigenfunctions vi, i = 1, . . . , n− 1,∫

Ω

(∆un + mnun)vi dx = 0.

We prove this claim as follows. Fix an eigenfunction vi. Let λi be its corresponding eigen-
value. Then∫

Ω

(∆un + mnun)vi dx = −
∫

Ω

(∇un · ∇vi) dx +

∫

∂Ω

∂un

∂ν
vi dS(x) +

∫

Ω

mnunvi dx

=

∫

Ω

un∆vi dx−
∫

∂Ω

un
∂vi

∂ν
dS(x) +

∫

∂Ω

∂un

∂ν
vi dS(x)

+

∫

Ω

mnunvi dx

= (−λi + mn)

∫

Ω

unvi dx.

By assumption, un ∈ Yn which implies un is orthogonal to the first n − 1 eigenvalues.
Therefore,

∫
Ω

unvi dx = 0 for i = 1, . . . , n− 1. Therefore,∫

Ω

(∆un + mnun)vi dx = 0.

Consequently, we conclude that ∫

Ω

(∆un + mnun)h dx = 0,

where h is an arbitrary trial function. Consequently, we conclude that

∆un + mnun = 0,

and, therefore, un is an eigenfunction with eigenvalue mn.
Now, clearly, mn ≥ λn−1 ≥ λn−2 ≥ . . . because Yn ⊂ Yn−1 ⊂ . . .. We can prove that

the other eigenvalues λn+1, λn+2, . . . are larger than mn using the same technique as in the
previous theorem, and the fact that the eigenfunctions vk for k ≥ n + 1 satisfy 〈vk, vi〉 = 0
for i = 1, . . . , n− 1.

We can now use the above minimization principles to approximate eigenvalues for given
regions Ω ⊂ Rn.

Example 6. Let Ω = [0, 1]. Use the trial function v(x) = x(1− x) to approximate the first
eigenvalue of (6.1) for this region Ω.

(Note: Of course, we already know the eigenvalues for Ω = [0, 1] are given by λn = (nπ)2.
We use this example just to demonstrate how the above technique works.)

We calculate the Rayleigh quotient of v,

||∇v||2
||v||2 =

∫ 1

0
|v′(x)|2 dx∫ 1

0
v2(x) dx

=

∫ 1

0
(1− 2x)2 dx∫ 1

0
(x− x2)2 dx

=

∫ 1

0
(1− 4x + 4x2) dx∫ 1

0
(x2 − 2x3 + x4) dx

=
(1/3)

(1/30)
= 10.

Of course, the first eigenvalue is actually π2 ≈ 9.8696, but with a fairly simple choice of trial
function, we get a fairly good approximation.

¦
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6.4 Minimax Principle

In this section, we present another theorem regarding the eigenvalues of (6.1). This theorem
is known as the minimax principle. It will allow us to prove a relationship between eigenvalues
of sets contained within larger sets. In particular, we will show that if Ω1 ⊂ Ω2, then
λn(Ω1) ≥ λn(Ω2), where λn is the nth eigenvalue of (6.1). This fact will give us another
means of approximating eigenvalues of arbitrary domains Ω. In addition, it will allow us to
prove the completeness of eigenfunctions of (6.1) in the L2-sense. Before we get to these
results, however, we present some motivation for the minimax principle. This motivation
will also provide us another means of approximating eigenvalues.

Rayleigh-Ritz Approximation.
Let w1, . . . , wn be n arbitrary trial functions. (Recall: w is a trial function if it is C2(Ω)

and vanishes on ∂Ω, but is not identically zero.) Let

w ≡
n∑

k=1

ckwk,

be a linear combination of these trial functions. Suppose we made a really good choice of
trial functions, and, in particular, chose w in such a way that w was an eigenfunction of
(6.1) with eigenvalue λ. Of course, this is not likely by randomly guessing, but we will use
this idea to find a way of approximating eigenvalues.

Now, if w was an eigenfunction of (6.1), then we know that

λ 〈wj, w〉 = λ

∫

Ω

wjw dx = −
∫

Ω

wj∆w dx =

∫

Ω

∇wj · ∇w dx = 〈∇wj,∇w〉 ,

using the fact that w, wj are trial functions, and, therefore, vanish on the boundary of Ω.
Further, using the definition of w, we have

λ

〈
wj,

n∑

k=1

ckwk

〉
=

〈
∇wj,∇

(
n∑

k=1

ckwk

)〉
,

which implies

λ

n∑

k=1

ck 〈wj, wk〉 =
n∑

k=1

ck 〈∇wj,∇wk〉 .

Define

ajk = 〈∇wj,∇wk〉
bjk = 〈wj, wk〉 .

(6.4)

Therefore, if w was actually an eigenfunction, we would have

λ

n∑

k=1

ckbjk =
n∑

k=1

ckajk for j = 1, . . . , n.

In other words, defining the n× n symmetric matrices

A = (ajk) B = (bjk),
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and letting

c =




c1
...
cn


 ,

we would have
λBc = Ac =⇒ [A− λB]c = 0.

In particular, this would mean A−λB is a singular matrix, and, therefore, det[A−λB] = 0.
Again, it is not likely that we will be so lucky in randomly choosing w, but we use this

technique to approximate our first n eigenvalues. We now state our approximation technique.
Let w1, . . . , wn be any n trial functions. For this choice of trial functions, define ajk, bjk as
in (6.4) and let A,B be the corresponding n × n symmetric matrices with entries ajk, bjk,
respectively. Then the n roots of the polynomial equation

det(A− λB) = 0

are approximations to the first n eigenvalues λ1, . . . , λn.
We now turn to the minimax principle for eigenvalues of (6.1). We use the Rayleigh-Ritz

approximation method to motivate the minimax principle. First, we prove the following
lemma.

Lemma 7. Let A, B be n × n symmetric matrices. In addition, let B be positive definite.
For i = 1, . . . , n let λ∗i be the n roots of the characteristic equation det(A− λB) = 0.

The n roots λ∗i are all real, and the largest root λ∗n satisfies

λ∗n = max
c∈Rn

c 6=0

Ac · c
Bc · c. (6.5)

Remark. For A = (ajk) and B = (bjk) where ajk and bjk are defined as in (6.4) for some
choice of trial functions wi, A and B will satisfy the hypotheses of this lemma. We will use
this lemma to motivate the minimax principle.

In order to prove Lemma 7, we first prove the following claim.

Claim 8. Let A,B be n × n real, symmetric matrices. In addition, assume B is positive
definite. Let λ∗1, . . . , λ

∗
n be the n roots of the characteristic equation

det(A− λB) = 0.

Then the roots λ∗i are all real. In addition, there exists a set of vectors {vi} which forms
a basis for Rn and such that each vi sastisfies the equation

Avi = λ∗i Bvi

for some λ∗i . Further,
Bvi · vj = 0 for i 6= j.
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Remark. In the proof below, we will use the following fact regarding positive definite, real
symmetric matrices. If B is a positive definite, real symmetric matrix, then there exists a
lower triangular matrix L whose diagonal entries are positive and such that B = LLT . This
is called the Cholesky decomposition. Ref: Linear Algebra with Applications, S. Leon.

Proof. First, we will show that the roots of the characteristic equation

det(A− λB) = 0

are all real. Assume λ∗i is a root of this equation. Then, using the fact that B = LLT for
some lower triangular matrix L whose diagonal entries are positive, we have

det(A− λ∗i LLT ) = 0 ⇐⇒ det(L−1A(LT )−1 − λ∗i I) = 0.

Therefore, λ∗i is a root of the characteristic equation det(A− λB) = 0 if and only if λ∗i is an
eigenvalue of the matrix

M = L−1A(LT )−1.

By a quick calculation, we see that M is real symmetric, and, therefore, all its eigenvalues
are real. In addition, M has an orthonormal eigenbasis {ui}.

We will now use this orthonormal eigenbasis {ui} to construct a basis for Rn consisting
of solutions of Av = λBv for some λ ∈ R. Let

vi ≡ (LT )−1ui.

As the {ui} form a basis for Rn and (LT )−1 has rank n, we see that the set {vi} forms a
basis for Rn.

We now need to show that each vi satisfies the equation

Avi = λ∗i Bvi

for some λ∗i . By assumption, ui is an eigenvector of M with corresponding eigenvalue λ∗i .
Therefore,

Mui = λ∗i ui =⇒ L−1A(LT )−1ui = λ∗i ui

=⇒ (LT )−1L−1A(LT )−1ui = λ∗i (L
T )−1ui

=⇒ (LLT )−1Avi = λ∗i vi

=⇒ B−1Avi = λ∗i vi

=⇒ Avi = λ∗i Bvi.

Therefore, we have found a set of vectors {vi} which forms a basis for Rn and such that each
vi satisfies the desired equation for some λ∗i ∈ R.

It remains only to show that

Bvi · vj = 0 for i 6= j.

Using the definition of vj and the fact that B = LLT for some lower triangular matrix L
whose diagonal entries are positive, we have

Bvi · vj = LLT (LT )−1ui · (LT )−1uj = Lui · (LT )−1uj = uT
i LT (LT )−1uj = uT

i uj = ui · uj = 0,

using the fact that the set {ui} is orthonormal.
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We now have the necessary ingredients to prove Lemma 7.

Proof of Lemma 7. By definition, it is easy to see that B is positive definite. Therefore,
applying Claim 8, we see that all roots of the characteristic equation

det(A− λB) = 0

are real. Let λ∗n be the largest of these roots. We now need to prove (6.5).
We will begin by showing that

max
c∈Rn

c 6=0

Ac · c
Bc · c ≤ λ∗n. (6.6)

Let c ∈ Rn. By Claim 8, we can write c as a linear combination of the vi where each vi is a
solution of

Avi = λ∗i Bvi

for one of the λ∗i . Therefore, writing

c = a1v1 + . . . + anvn,

and using the fact that B is positive definite, we have

Ac · c = A(a1v1 + . . . + anvn) · c
= (a1λ

∗
1Bv1 + . . . + anλ

∗
nBvn) · (a1v1 + . . . + anvn)

= a2
1λ
∗
1Bv1 · v1 + . . . + a2

nλ
∗
nBvn · vn

≤ a2
1λ
∗
nBv1 · v1 + . . . + a2

nλ
∗
nBvn · vn

= λ∗n(B(a1v1 + . . . + anvn)) · (a1v1 + . . . + anvn)

= λ∗n(Bc · c).

Consequently, we have shown that
Ac · c
Bc · c ≤ λ∗n.

Taking the maximum of both sides over all c ∈ Rn, we have proven (6.6).
It remains only to show that

λ∗n ≤ max
c∈Rn

c6=0

Ac · c
Bc · c. (6.7)

We do so by finding a specific c ∈ Rn such that

λ∗n ≤
Ac · c
Bc · c.

We know that λ∗n is a root of the characteristic equation det(A− λB) = 0. Therefore, there
exists a vector vn 6≡ 0 ∈ Rn such that (A− λ∗nB)vn = 0. Let c = vn. Therefore,

Avn · vn

Bvn · vn

=
λ∗nBvn · vn

Bvn · vn

= λ∗n,
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and we have proved (6.7).
¤

We now return to motivating the minimax principle. Recall from our Rayleigh-Ritz
approximation that for a given set Ω ⊂ Rn, we can approximate the first n eigenvalues of
(6.1) by looking for the roots of the characteristic equation

det(A− λB) = 0

where A = (ajk) and B = (bjk) for ajk, bjk defined in (6.4) for some choice of trial functions
{wi} for Ω. From Lemma 7, we have shown that the largest root of det(A− λB) is given by

λ∗n = max
c∈Rn

c 6=0

Ac · c
Bc · c.

Therefore, for a fixed set of trial functions w1, . . . , wn for a given set Ω ⊂ Rn, we have the
following formula for the approximation of the nth eigenvalue of (6.1). Let A = (ajk) =
(〈∇wj,∇wk〉), B = (bjk) = (〈wj, wk〉). We see that

Ac · c =

〈
n∑

j=1

cj∇wj,

n∑

k=1

ck∇wk

〉

Bc · c =

〈
n∑

j=1

cjwj,

n∑

k=1

ckwk

〉
.

Therefore, for A,B defined in terms of the trial functions w1, . . . , wn, we see that the largest
root of the characteristic equation det(A− λB) is given by

λ∗n(w1, . . . , wn) = max
c∈Rn

{
||∇w||2
||w||2 : w =

n∑
i=1

ciwi

}
. (6.8)

This value λ∗n(w1, . . . , wn) will give us an approximation to the nth eigenvalue of (6.1). We
will show below that if we take the minimum of λ∗n(w1, . . . , wn) over all possible sets of trial
functions, then we will get the exact value of the nth eigenvalue of (6.1).

Theorem 9. (Minimax Principle) Let Y denote the set of trial functions associated with
(6.1) (see Theorem 4). The nth eigenvalue of (6.1) is given by

λn = min
(w1,...,wn)∈Y

λ∗n(w1, . . . , wn).

That is, the minimum is taken over all possible sets of n linearly independent trial functions.

Proof. First, we will show that λn ≤ min λ∗n. Fix n linearly independent trial functions
w1, . . . , wn. Let

w(x) ≡
n∑

j=1

cjwj(x)
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be a linear combination of the n trial functions such that w is orthogonal to the first n− 1
eigenfunctions v1, . . . , vn−1 of (6.1). That is, choose cj such that

〈w, vk〉 =
n∑

j=1

cj 〈wj, vk〉 = 0 for k = 1, . . . , n− 1.

We know we can solve this system, because we have only n−1 equations for our n unknowns
c1, . . . , cn. Now from the Minimum Principle for the nth Eigenvalue, we know that

λn ≤ ||∇w||2
||w||2 ,

because

λn = min
v∈Yn

{ ||∇v||2
||v||2

}
,

where Yn is as defined in Theorem 5, and w ∈ Yn. Therefore,

λn ≤ ||∇w||2
||w||2 ≤ max

c∈Rn

∣∣∣
∣∣∣∇∑n

j=1 cjwj

∣∣∣
∣∣∣
2

∣∣∣
∣∣∣∑n

j=1 cjwj

∣∣∣
∣∣∣
2 = λ∗n(w1, . . . , wn).

Now taking the minimum of both sides over all possible sets of n linearly independent trial
functions, we see that

λn ≤ min
(w1,...,wn)∈Y

λ∗n(w1, . . . , wn).

Now, we need to show that λn ≥ min λ∗n. In particular, we will show there exists a
particular choice of trial functions w1, . . . , wn such that λ∗n(w1, . . . , wn) ≤ λn. Let w1, . . . , wn

be the first n eigenfunctions of (6.1) with corresponding eigenvalues λ1, . . . , λn. Without
loss of generality, we may assume they are orthogonal and normalized.

By definition,

λ∗n(w1, . . . , wn) = max
c∈Rn





∣∣∣
∣∣∣∇∑n

j=1 cjwj

∣∣∣
∣∣∣
2

∣∣∣
∣∣∣∑n

j=1 cjwj

∣∣∣
∣∣∣
2





.

Now, using the fact that the wj are eigenfunctions, orthogonal, and normalized, we have
∣∣∣∣∣

∣∣∣∣∣∇
n∑

j=1

cjwj

∣∣∣∣∣

∣∣∣∣∣

2

=

〈
n∑

j=1

cj∇wj,

n∑
j=1

cj∇wj

〉
= −

〈
n∑

j=1

cjwj,

n∑
j=1

cj∆wj

〉

=

〈
n∑

j=1

cjwj,

n∑
j=1

λjcjwj

〉
=

n∑
j=1

〈cjwj, λjcjwj〉 =
n∑

j=1

λjc
2
j 〈wj, wj〉 =

n∑
j=1

λjc
2
j .

Again, using the fact that the wj are orthogonal and normalized, we have
∣∣∣∣∣

∣∣∣∣∣
n∑

j=1

cjwj

∣∣∣∣∣

∣∣∣∣∣

2

=

〈
n∑

j=1

cjwj,

n∑
j=1

cjwj

〉
=

n∑
j=1

〈cjwj, cjwj〉 =
n∑

j=1

c2
j 〈wj, wj〉 =

n∑
j=1

c2
j .
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Therefore, we have

λ∗n(w1, . . . , wn) = max
c∈Rn

∑n
j=1 λjc

2
j∑n

j=1 c2
j

≤ max
c∈Rn

∑n
j=1 λnc

2
j∑n

j=1 c2
j

= λn.

Therefore, for this choice of trial functions w1, . . . , wn, we have

λ∗n(w1, . . . , wn) ≤ λn,

and, consequently,

min
(w1,...,wn)∈Y

λ∗n(w1, . . . , wn) ≤ λn.

Therefore, our theorem is proved.

We will now use the minimax principle to prove the following theorem

Theorem 10. If Ω1 ⊂ Ω2, then λn(Ω1) ≥ λn(Ω2), where λn(Ωi) is the nth eigenvalue of the
Dirichlet problem (6.1) on Ωi.

Proof. Let Y (Ωi) be the set of trial functions for Ωi, i = 1, 2. Recall

Y (Ωi) = {w : w ∈ C2(Ωi) : w 6≡ 0, w = 0 for x ∈ ∂Ωi}.
For emphasis, we let

λ∗n(w1, . . . , wn)|Ωi
≡ λ∗n(w1, . . . , wn) where the L2 norms are taken over Ωi.

By the minimax principle, we know that

λn(Ωi) = min
(w1,...,wn)∈Y (Ωi)

λ∗n(w1, . . . , wn)|Ωi

= min
(w1,...,wn)∈Y (Ωi)

max
c∈Rn

{ ||∇w||2L2(Ωi)

||w||2L2(Ωi)

: w =
n∑

i=1

ciwi

}
.

For a fixed set of trial functions w1, . . . , wn for Ω1, let c∗ = c∗(w1, . . . , wn) be the vector in
Rn which maximizes the Rayleigh quotient. That is,

λ∗n(w1, . . . , wn)|Ωi
=
||∇w∗||2L2(Ω1)

||w∗||2L2(Ω1)

where w∗ ≡
n∑

i=1

c∗i wi.

Now, we can extend each of the trial functions wi to be a trial function for Ω2 by extending
wi to be zero outside Ω1. Let w̃i denote wi extended to Ω2 in this way. Therefore, it is clear
that

λ∗n(w̃1, . . . , w̃n)|Ω2
=
||∇w̃∗||2L2(Ω2)

||w̃∗||2L2(Ω2)

where w̃∗ ≡
n∑

i=1

c∗i w̃i.

As the functions w̃i are zero outside Ω1, we see that

λ∗n(w1, . . . , wn)|Ω1
= λ∗n(w̃1, . . . , w̃n)|Ω2

. (6.9)
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Now suppose v1, . . . , vn are the n trial functions for Ω1 which minimize λ∗n(w1, . . . , wn)|Ω1 .
Then using (6.9), we see that

λ∗n(ṽ1, . . . , ṽn)|Ω2
= λ∗n(v1, . . . , vn)|Ω1

,

and, therefore,

λn(Ω2) = min
trial functions∈Y (Ω2)

λ∗n|Ω2
≤ λ∗n(v1, . . . , vn)|Ω1

= λn(Ω1),

as claimed.

Remark. In the above theorem, when extending the functions wi to Ω2 by defining wi to
be zero outside Ω1, we overlooked the smoothness issues of the extended functions. This is
a technical point which we will not get into here.

Corollary 11. For Ω a bounded subset of Rn, the eigenvalues of the Dirichlet problem,
{ −∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω

form an infinite sequence {λn} such that λn → +∞ as n → +∞.

Proof. For Ω a bounded subset of Rn, let

R ≡ {(x1, . . . , xn) ∈ Rn : |xi| ≤ M, i = 1, . . . , n}
for M sufficiently large such that Ω ⊂ R. Now we can explicitly calculate the eigenvalues of
R. In particular, the eigenvalues are given by

λm1,...,mn(R) =
n∑

i=1

(miπ

2M

)2

,

where the mi are positive integers. We see that these eigenvalues form an infinite sequence
which goes to infinity. By the above theorem, we know that the corresponding eigenvalues
for Ω satisfy λm(Ω) ≥ λm(R). Therefore, we conclude that the eigenvalues of Ω form an
infinite sequence which goes to infinity.

We now turn to proving the completeness of the eigenfunctions for the Dirichlet problem
(6.1).

Theorem 12. The eigenfunctions of the Dirichlet problem (6.1) are complete in the L2

sense. That is to say, if {vn} is the set of eigenfunctions of (6.1) for a set Ω ⊂ Rn, then for
any function f ∈ L2(Ω),

∣∣∣∣∣

∣∣∣∣∣f −
N∑

n=1

cnvn

∣∣∣∣∣

∣∣∣∣∣

2

L2(Ω)

=

∫

Ω

|f −
N∑

n=1

cnvn|2 dx → 0 as N → +∞ (6.10)

where

cn ≡ 〈f, vn〉
〈vn, vn〉 .
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Proof. We will prove this in the case when f is a trial function; that is, f ∈ C2(Ω), f(x) = 0
for x ∈ ∂Ω. To prove this theorem in the case of general f ∈ L2(Ω), you can use the fact
that any L2 function can be approximated in L2 norm by a C2 function which vanishes on
∂Ω.

So, below, we assume that f is a trial function. Let

rN(x) = f(x)−
N∑

n=1

cnvn(x),

where cn = 〈f,vn〉
〈vn,vn〉 . Without loss of generality, we may assume the vn are mutually orthogonal.

We claim that ||rN ||L2 → 0 as N → +∞.
First, we will show that rN is a trial function which is orthogonal to the first N − 1

eigenfunctions of (6.1). By assumption, f is a trial function. In addition, the eigenfunctions
are trial functions. Therefore, rN is a trial function. We just need to show that it’s orthogonal
to the first N − 1 eigenfunctions. Let vi be one of the first N − 1 eigenfunctions. Then using
the fact that the eigenfunctions vi are mutually orthogonal, we have

〈rN , vi〉 =

〈
f −

N∑
n=1

cnvn, vi

〉

= 〈f, vi〉 −
N∑

n=1

cn 〈vn, vi〉

= 〈f, vi〉 − ci 〈vi, vi〉
= 〈f, vi〉 − 〈f, vi〉

〈vi, vi〉 〈vi, vi〉 = 0.

Consequently, we have shown that rN is a trial function which is orthogonal to the first
N − 1 eigenfunctions. Therefore, by the minimum principle for the Nth eigenvalue, letting
Y denote the set of trial functions, we know that

λN = min

{ ||∇w||2
||w||2 : w ∈ Y, 〈w, vi〉 = 0 for i = 1, . . . , N − 1

}
≤ ||∇rN ||2

||rN ||2 . (6.11)

Next, we will show that ||∇rN ||2 ≤ ||∇f ||2. By computation, we see that

||∇rN ||2L2(Ω) =

∣∣∣∣∣

∣∣∣∣∣∇f −
N∑

n=1

cn∇vn

∣∣∣∣∣

∣∣∣∣∣

2

L2(Ω)

=

∫

Ω

∣∣∣∣∣∇f −
N∑

n=1

cn∇vn

∣∣∣∣∣

2

dx

=

∫

Ω

|∇f |2 − 2∇f ·
N∑

n=1

cn∇vn +

∣∣∣∣∣
N∑

n=1

cn∇vn

∣∣∣∣∣

2

dx

(6.12)
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Now, by the Divergence theorem,

∫

Ω

∇f · ∇vn dx = −
∫

Ω

f∆vn dx +

∫

∂Ω

f
∂vn

∂ν
dS(x)

= λn

∫

Ω

fvn dx,

(6.13)

using the fact that vn is an eigenfunction and f vanishes on the boundary.
Next, in a similar manner, we see that

∫

Ω

∇vm · ∇vn dx = −
∫

Ω

vm∆vn dx +

∫

∂Ω

vm
∂vn

∂ν
dS(x)

= λn

∫

Ω

vmvn dx.

Now using the fact that the eigenfunctions vn are mutually orthogonal, we have

∫

Ω

∇vm · ∇vn dx =

{
λn

∫
Ω

v2
n dx m = n

0 m 6= n.
(6.14)

Now putting (6.13) and (6.14) into (6.12), we have

||∇rN ||2L2(Ω) =

∫

Ω

|∇f |2 − 2
N∑

n=1

cnλnfvn +
N∑

n=1

c2
nλnv

2
n dx.

Now substituting in for cn, we have

∫

Ω

c2
nλnv2

n dx = c2
nλn

∫

Ω

v2
n dx

= cn
〈f, vn〉
〈vn, vn〉λn

∫

Ω

v2
n dx

= cnλn 〈f, vn〉
= cnλn

∫

Ω

fvn dx.

Therefore, we have

||∇rN ||2L2(Ω) =

∫

Ω

|∇f |2 − 2
N∑

n=1

cnλnfvn +
N∑

n=1

cnλnfvn dx

=

∫

Ω

|∇f |2 −
N∑

n=1

cnλnfvn dx

=

∫

Ω

|∇f |2 −
N∑

n=1

c2
nλnv

2
n dx.
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Now using the fact that all eigenvalues of the Dirichlet problem are positive, we see that

||∇rN ||2L2(Ω) ≤
∫

Ω

|∇f |2 dx = ||∇f ||2L2(Ω). (6.15)

Now combining (6.11) and (6.15), we see that

λN ≤ ||∇rN ||2
||rN ||2 ≤ ||∇f ||2

||rN ||2 .

Therefore,

||rN ||2 ≤ ||∇f ||2
λN

.

Now, by assumption, f ∈ C2(Ω). Therefore, ||∇f ||2 is bounded. In addition, as we showed
earlier, λN → +∞ as N → +∞. Therefore, we conclude that

||rN ||2 → 0 as N → +∞.
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