
Math 220A - Fall 2002
Homework 8 Solutions

1. Consider 



utt − c2∆u = 0 x ∈ R3, t > 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x).

Suppose φ, ψ are supported in the annular region a < |x| < b.

(a) Find the time T1 > 0 such that u(x, t) is definitely zero for t > T1 in the case
when

i. |x| > b
Answer:

T1 =
|x|+ b

c
.

ii. a < |x| < b
Answer:

T1 =
|x|+ b

c
.

iii. |x| < a.
Answer:

T1 =
|x|+ b

c
.

(b) Find the time T2 > 0 such that u(x, t) is definitely zero for 0 < t < T2 in the case
when

i. |x| > b
Answer:

T2 =
|x| − b

c
.

ii. |x| < a.
Answer:

T2 =
a− |x|

c
.

(c) Consider the same questions for n = 2 dimensions.

Answer: Since u(x, t) depends on the values of the initial data in B(x, ct), there
is no time T1 such that we can guarantee that u(x, t) ≡ 0 for all t > T1. In answer

to part (b), we again have T2 = (|x| − b)/c if |x| > b and T2 = (a− |x|)/c if |x| < a .
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2. Solve 



utt − c2∆u = 0 (x, y, z) ∈ R3, t > 0

u(x, y, z, 0) = 1

ut(x, y, z, 0) = x2 + y2 + z2.

Answer: Note: Below x, y and z represent vectors in R3. Our solution is given by
Kirchoff’s formula as

u(x, t) = −
∫

∂B(x,ct)

φ(y) +∇φ(y) · (y − x) + tψ(y) dS(y)

= −
∫

∂B(x,ct)

1 + t|y|2 dS(y).

By making a change of variables y = x + ctz, we can rewrite this as

u(x, t) = −
∫

∂B(0,1)

[1 + t|x + ctz|2] dS(z)

= −
∫

∂B(0,1)

[1 + t|x|2 + 2ct2x · z + c2t3|z|2] dS(z).

Now

−
∫

∂B(0,1)

1 dS(z) = 1

−
∫

∂B(0,1)

t|x|2 dS(z) = t|x|2

−
∫

∂B(0,1)

2ct2x · z dS(z) = 0

−
∫

∂B(0,1)

c2t3|z|2 dS(z) = c2t3.

Therefore, we conclude that our solution is

u(x, t) = 1 + t|x|2 + c2t3.

3. Solve 



utt − c2∆u = 0 (x, y) ∈ R2, t > 0

u(x, y, 0) = 0

ut(x, y, 0) = x2 + y2

Answer: Note: Below, x, y and z represent vectors in R2. The solution is given by
the formula

u(x, t) =
1

2πc2t2

∫

B(x,ct)

ctφ(y) + ct2ψ(y) + ct∇φ(y) · (y − x)

(c2t2 − |y − x|2)1/2
dy

=
1

2πc2t2

∫

B(x,ct)

ct2|y|2
(c2t2 − |y − x|2)1/2

dy

=
1

2
−
∫

B(x,ct)

ct2|y|2
(c2t2 − |y − x|2)1/2

dy
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Now making the change of variables y = x + ctz, we have

u(x, t) =
1

2
−
∫

B(0,1)

ct2|x + ctz|2
(c2t2 − |ctz|2)1/2

dz

=
1

2
−
∫

B(0,1)

ct2|x + ctz|2
ct(1− |z|2)1/2

dz

=
t

2
−
∫

B(0,1)

|x|2 + 2ctx · z + c2t2|z|2
(1− |z|2)1/2

dz.

Now the first term can be evaluated as follows.

t|x|2
2π

∫

B(0,1)

1

(1− |z|2)1/2
dz =

t|x|2
2π

∫ 2π

0

∫ 1

0

r

(1− r2)1/2
dr dθ

= t|x|2.

For the second term, using the fact that z1/(1 − |z|2)1/2 is odd with respect to the z2

axis (and similarly z2/(1−|z|2)1/2 is odd with respect to the z1 axis), we conclude that
the second term is zero.

For the last term, we evaluate as follows,

c2t3

2π

∫

B(0,1)

|z|2
(1− |z|2)1/2

dS(z) =
c2t3

2π

∫ 2π

0

∫ 1

0

r3

(1− r2)1/2
dr dθ

=
2c2t3

3
.

Therefore, our solution is given by

u(x, t) = t|x|2 +
2c2t3

3
.

4. Solve {
Ut + AUx = 0

U(x, 0) = Φ(x)

where

A =




1 1 0
1 1 0
0 0 2




and

Φ(x) =




sin(x)
1
e2


 .

Answer: First, we diagonalize our matrix A by looking for our eigenvalues. We look
at det(A − λI) = 0. We see that our eigenvalues are given by λ = 0, 2. First, for
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λ1 = 0, we see that

A− λ1I = A =




1 1 0
1 1 0
0 0 2


 →




1 1 0
0 0 2
0 0 0


 .

Therefore, an eigenvector associated with λ1 = 0 is given by v1 = [−1 1 0]T . Then for
λ2 = 2, we have

A− λ2I =



−1 1 0
1 −1 0
0 0 0


 →




1 −1 0
0 0 0
0 0 0


 .

Therefore, we have two linearly independent eigenvectors, v2 = [1 1 0]T and v3 =
[0 0 1]T . Consequently, letting

Q =



−1 1 0
1 1 0
0 0 1




and

Λ =




0 0 0
0 2 0
0 0 2


 ,

we see that
Q−1AQ = Λ.

In particular, plugging A = QΛQ−1 into our equation, we have

Ut + QΛQ−1Ux = 0.

Multiplying the equation by Q−1, we have

Q−1Ut + ΛQ−1Ux = 0.

Then, letting V = Q−1U , we have the decoupled initial-value problem

{
Vt + ΛVx = 0

V (x, 0) = Ψ̃(x)

where

Ψ̃(x) = Q−1Ψ̃(x) =
1

2



− sin(x) + 1
sin(x) + 1

2e2


 .

We have three linear transport equations. First,





(v1)t = 0

v1(x, 0) =
1

2
(− sin(x) + 1)
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implies

v1(x, t) =
1

2
(− sin(x) + 1).

Second, 



(v2)t + 2(v2)x = 0

v2(x, 0) =
1

2
(sin(x) + 1)

implies

v2(x, t) =
1

2
(sin(x− 2t) + 1).

Last, {
(v3)t + 2(v3)x = 0

v3(x, 0) = e2

implies
v3(x, t) = e2.

Therefore,

V =
1

2



− sin(x) + 1

sin(x− 2t) + 1
2e2




and U = QV implies our solution is given by

U(x, t) =
1

2




sin(x) + sin(x− 2t)
− sin(x) + sin(x− 2t) + 2

2e2


 .

5. Consider the symmetric hyperbolic system

[
u1

u2

]

t

+

[
1 0
0 2

] [
u1

u2

]

x1

+

[
0 1
1 0

] [
u1

u2

]

x2

=

[
0
0

]
.

(a) Find the smallest ball in R2 in which the domain of dependence of U(3, 4, 10) will
lie. That is, find M such that the value of U at the point (3, 4, 10) depends at
most on the value of the initial data U(x1, x2, 0) in the ball of radius 10M about
(3, 4).

Answer: For a symmetric hyperbolic system, the domain of dependence of the
solution at a point (~x0, t0) is contained within the ball of radius Mt0 where

M = max
|~ξ|=1, i=1,...,m

|λi(~ξ)|.

where λi(ξ), i = 1, . . . ,m are the m eigenvalues of the matrix

A(ξ) =
m∑
i

ξiAi.
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Here, for ξ ∈ R2,

A(ξ) = ξ1A1 + ξ2A2

=

[
ξ1 ξ2

ξ2 2ξ1

]
.

The eigenvalues of A(ξ) are given by

λ1 =
3ξ1 +

√
ξ2
1 + 4ξ2

2

2

λ2 =
3ξ1 −

√
ξ2
1 + 4ξ2

2

2

Now
max
|~ξ|=1

|λi(~ξ)| = 2, i = 1, 2.

This can be found by maximizing λ1, λ2 subject to the constraint |~ξ| = 1. There-
fore, M = 2, and consequently, the domain of dependence for the point (3, 4, 10)
is the ball {(x, y) ∈ R2 : |x− 3|2 + |y − 4|2 ≤ (2 · 10)2}.

(b) Show that the ball you found in part (a) is the smallest ball in which you can
guarantee the domain of dependence will lie, by showing there exists a direc-
tion ξ = (ξ1, ξ2), where |ξ| = 1 for which there exists a plane wave solution
U(x1, x2, t) = V (x · ξ−Mt); that is, a plane wave solution which travels at speed
M . You don’t need to calculate the plane wave solution.

Answer: From part (a), we see max|~ξ|=1 |λ1(~ξ)| occurs at ~ξ = (1, 0), in which

case λ1(1, 0) = 2. Similarly, max|~ξ|=1 |λ2(~ξ)| occurs at ~ξ = (−1, 0), in which case

λ2(~ξ) = −2. As this is a symmetric hyperbolic equation, we know there are m
plane wave solutions for every direction ξ ∈ R2. In particular, for each ξ ∈ R2,
the m plane wave solutions have speed λi(ξ) for i = 1, . . . , m.

To show this explicitly, in our case above, we look for a plane wave solution
~v(~ξ · ~x− σt) where ~ξ = (1, 0). In other words, we are looking for a solution of the
form ~v(x1 − σt) for some σ. Plugging this into our system, we have

−σ~v′(x1 − σt) +

[
1 0
0 2

]
~v′(x1 − σt) = ~0.

This means we need to look for a function ~v′(x1 − σt) and a value σ such that
[
1 0
0 2

]
~v′(x1 − σt) = σ~v′(x1 − σt).

In other words, an eigenvector ~v′ and a corresponding eigenvalue σ for
[
1 0
0 2

]
.

Clearly, 2 is an eigenvalue of this matrix with corrsponding eigenvector ~r2. Letting
~v′(x1− σt) = ~r2, we see we have found a plane wave solution which travels in the
direction (1, 0) with speed 2.
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(c) Find two plane wave solutions which propagate in the direction (ξ1, ξ2) = (3/5, 4/5);
that is, find two general solutions of the form V1(ξ · x− σ1t), V2(ξ · x− σ2t).

Answer: We look for a plane wave solution ~v(~ξ · ~x − σt) which travels in the

direction ~ξ = (3/5, 4/5). We plug

~v(~ξ · ~x− σt) = ~v(ξ1x1 + ξ2x2 − σt)

into our system. Doing so, we have

−σ~v′ + ξ1A1~v
′ + ξ2A2~v

′ = ~0,

where ~v′ = ~v′(ξ1x1 + ξ2x2 − σt)

A1 =

[
1 0
0 2

]

A2 =

[
0 1
1 0

]
.

Therefore, we need to look for an eigenvector ~v′ and a corresponding eigenvalue
σ of

A(~ξ) = ξ1A1 + ξ2A2

at ~ξ = (3/5, 4/5). Now

A(~ξ) =

[
ξ1 ξ2

ξ2 2ξ1

]

=

(
1

5

)[
3 4
4 6

]
.

The eigenvalues are given by

λ1 =
1

10
(9 +

√
73)

λ2 =
1

10
(9−

√
73)

with corresponding eigenvectors

~r1 =

[
1
8
(−3 +

√
73)

1

]

~r2 =

[
1
8
(−3−√73)

1

]

Therefore, any function ~v′1(~ξ · ~x− λ1t) which is a multiple of ~r1 will be an eigen-

function of A(~ξ), and, therefore, a plane wave solution. (Similarly, any function

~v′2(~ξ · ~x − λ2t) which is a multiple of ~r2.) Therefore, two general plane wave so-

lutions in the direction ~ξ = (3/5, 4/5) with speeds λ1 and λ2 given above, are of
the form

~v1(~ξ · ~x− λ1t) = f(~ξ · ~x− λ1t)~r1,
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and
~v2(~ξ · ~x− λ2t) = g(~ξ · ~x− λ2t)~r2

for arbitrary functions f and g, where ~r1 and ~r2 are given above.
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