Math 220A - Fall 2002
 Homework 8 Solutions

1. Consider

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad x \in \mathbb{R}^{3}, t>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

Suppose ϕ, ψ are supported in the annular region $a<|x|<b$.
(a) Find the time $T_{1}>0$ such that $u(x, t)$ is definitely zero for $t>T_{1}$ in the case when
i. $|x|>b$

Answer:

$$
T_{1}=\frac{|x|+b}{c}
$$

ii. $a<|x|<b$

Answer:

$$
T_{1}=\frac{|x|+b}{c} .
$$

iii. $|x|<a$.

Answer:

$$
T_{1}=\frac{|x|+b}{c}
$$

(b) Find the time $T_{2}>0$ such that $u(x, t)$ is definitely zero for $0<t<T_{2}$ in the case when
i. $|x|>b$

Answer:

$$
T_{2}=\frac{|x|-b}{c}
$$

ii. $|x|<a$.

Answer:

$$
T_{2}=\frac{a-|x|}{c}
$$

(c) Consider the same questions for $n=2$ dimensions.

Answer: Since $u(x, t)$ depends on the values of the initial data in $B(x, c t)$, there is no time T_{1} such that we can guarantee that $u(x, t) \equiv 0$ for all $t>T_{1}$. In answer to part (b), we again have $T_{2}=(|x|-b) / c$ if $|x|>b$ and $T_{2}=(a-|x|) / c$ if $|x|<a$.
2. Solve

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad(x, y, z) \in \mathbb{R}^{3}, t>0 \\
u(x, y, z, 0)=1 \\
u_{t}(x, y, z, 0)=x^{2}+y^{2}+z^{2}
\end{array}\right.
$$

Answer: Note: Below x, y and z represent vectors in \mathbb{R}^{3}. Our solution is given by Kirchoff's formula as

$$
\begin{aligned}
u(x, t) & =f_{\partial B(x, c t)} \phi(y)+\nabla \phi(y) \cdot(y-x)+t \psi(y) d S(y) \\
& =f_{\partial B(x, c t)} 1+t|y|^{2} d S(y)
\end{aligned}
$$

By making a change of variables $y=x+c t z$, we can rewrite this as

$$
\begin{aligned}
u(x, t) & =f_{\partial B(0,1)}\left[1+t|x+c t z|^{2}\right] d S(z) \\
& =f_{\partial B(0,1)}\left[1+t|x|^{2}+2 c t^{2} x \cdot z+c^{2} t^{3}|z|^{2}\right] d S(z)
\end{aligned}
$$

Now

$$
\begin{aligned}
& f_{\partial B(0,1)} 1 d S(z)=1 \\
& f_{\partial B(0,1)} t|x|^{2} d S(z)=t|x|^{2} \\
& f_{\partial B(0,1)} 2 c t^{2} x \cdot z d S(z)=0 \\
& f_{\partial B(0,1)} c^{2} t^{3}|z|^{2} d S(z)=c^{2} t^{3}
\end{aligned}
$$

Therefore, we conclude that our solution is

$$
u(x, t)=1+t|x|^{2}+c^{2} t^{3}
$$

3. Solve

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad(x, y) \in \mathbb{R}^{2}, t>0 \\
u(x, y, 0)=0 \\
u_{t}(x, y, 0)=x^{2}+y^{2}
\end{array}\right.
$$

Answer: Note: Below, x, y and z represent vectors in \mathbb{R}^{2}. The solution is given by the formula

$$
\begin{aligned}
u(x, t) & =\frac{1}{2 \pi c^{2} t^{2}} \int_{B(x, c t)} \frac{c t \phi(y)+c t^{2} \psi(y)+c t \nabla \phi(y) \cdot(y-x)}{\left(c^{2} t^{2}-|y-x|^{2}\right)^{1 / 2}} d y \\
& =\frac{1}{2 \pi c^{2} t^{2}} \int_{B(x, c t)} \frac{c t^{2}|y|^{2}}{\left(c^{2} t^{2}-|y-x|^{2}\right)^{1 / 2}} d y \\
& =\frac{1}{2} \int_{B(x, c t)} \frac{c t^{2}|y|^{2}}{\left(c^{2} t^{2}-|y-x|^{2}\right)^{1 / 2}} d y
\end{aligned}
$$

Now making the change of variables $y=x+c t z$, we have

$$
\begin{aligned}
u(x, t) & =\frac{1}{2} \int_{B(0,1)} \frac{c t^{2}|x+c t z|^{2}}{\left(c^{2} t^{2}-|c t z|^{2}\right)^{1 / 2}} d z \\
& =\frac{1}{2} \int_{B(0,1)} \frac{c t^{2}|x+c t z|^{2}}{c t\left(1-|z|^{2}\right)^{1 / 2}} d z \\
& =\frac{t}{2} \int_{B(0,1)} \frac{|x|^{2}+2 c t x \cdot z+c^{2} t^{2}|z|^{2}}{\left(1-|z|^{2}\right)^{1 / 2}} d z .
\end{aligned}
$$

Now the first term can be evaluated as follows.

$$
\begin{aligned}
\frac{t|x|^{2}}{2 \pi} \int_{B(0,1)} \frac{1}{\left(1-|z|^{2}\right)^{1 / 2}} d z & =\frac{t|x|^{2}}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{r}{\left(1-r^{2}\right)^{1 / 2}} d r d \theta \\
& =t|x|^{2}
\end{aligned}
$$

For the second term, using the fact that $z_{1} /\left(1-|z|^{2}\right)^{1 / 2}$ is odd with respect to the z_{2} axis (and similarly $z_{2} /\left(1-|z|^{2}\right)^{1 / 2}$ is odd with respect to the z_{1} axis), we conclude that the second term is zero.
For the last term, we evaluate as follows,

$$
\begin{aligned}
\frac{c^{2} t^{3}}{2 \pi} \int_{B(0,1)} \frac{|z|^{2}}{\left(1-|z|^{2}\right)^{1 / 2}} d S(z) & =\frac{c^{2} t^{3}}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{1} \frac{r^{3}}{\left(1-r^{2}\right)^{1 / 2}} d r d \theta \\
& =\frac{2 c^{2} t^{3}}{3}
\end{aligned}
$$

Therefore, our solution is given by

$$
u(x, t)=t|x|^{2}+\frac{2 c^{2} t^{3}}{3}
$$

4. Solve

$$
\left\{\begin{array}{l}
U_{t}+A U_{x}=0 \\
U(x, 0)=\Phi(x)
\end{array}\right.
$$

where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

and

$$
\Phi(x)=\left[\begin{array}{c}
\sin (x) \\
1 \\
e^{2}
\end{array}\right]
$$

Answer: First, we diagonalize our matrix A by looking for our eigenvalues. We look at $\operatorname{det}(A-\lambda I)=0$. We see that our eigenvalues are given by $\lambda=0,2$. First, for
$\lambda_{1}=0$, we see that

$$
A-\lambda_{1} I=A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, an eigenvector associated with $\lambda_{1}=0$ is given by $\mathbf{v}_{\mathbf{1}}=[-110]^{T}$. Then for $\lambda_{2}=2$, we have

$$
A-\lambda_{2} I=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, we have two linearly independent eigenvectors, $\mathbf{v}_{\mathbf{2}}=\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{T}$ and $\mathbf{v}_{\mathbf{3}}=$

$$
Q=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

and

$$
\Lambda=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

we see that

$$
Q^{-1} A Q=\Lambda
$$

In particular, plugging $A=Q \Lambda Q^{-1}$ into our equation, we have

$$
U_{t}+Q \Lambda Q^{-1} U_{x}=0
$$

Multiplying the equation by Q^{-1}, we have

$$
Q^{-1} U_{t}+\Lambda Q^{-1} U_{x}=0
$$

Then, letting $V=Q^{-1} U$, we have the decoupled initial-value problem

$$
\left\{\begin{array}{r}
V_{t}+\Lambda V_{x}=0 \\
V(x, 0)=\widetilde{\Psi}(x)
\end{array}\right.
$$

where

$$
\widetilde{\Psi}(x)=Q^{-1} \widetilde{\Psi}(x)=\frac{1}{2}\left[\begin{array}{c}
-\sin (x)+1 \\
\sin (x)+1 \\
2 e^{2}
\end{array}\right]
$$

We have three linear transport equations. First,

$$
\left\{\begin{array}{l}
\left(v_{1}\right)_{t}=0 \\
v_{1}(x, 0)=\frac{1}{2}(-\sin (x)+1)
\end{array}\right.
$$

implies

$$
v_{1}(x, t)=\frac{1}{2}(-\sin (x)+1) .
$$

Second,

$$
\left\{\begin{array}{l}
\left(v_{2}\right)_{t}+2\left(v_{2}\right)_{x}=0 \\
v_{2}(x, 0)=\frac{1}{2}(\sin (x)+1)
\end{array}\right.
$$

implies

$$
v_{2}(x, t)=\frac{1}{2}(\sin (x-2 t)+1) .
$$

Last,

$$
\left\{\begin{array}{l}
\left(v_{3}\right)_{t}+2\left(v_{3}\right)_{x}=0 \\
v_{3}(x, 0)=e^{2}
\end{array}\right.
$$

implies

$$
v_{3}(x, t)=e^{2}
$$

Therefore,

$$
V=\frac{1}{2}\left[\begin{array}{c}
-\sin (x)+1 \\
\sin (x-2 t)+1 \\
2 e^{2}
\end{array}\right]
$$

and $U=Q V$ implies our solution is given by

$$
U(x, t)=\frac{1}{2}\left[\begin{array}{c}
\sin (x)+\sin (x-2 t) \\
-\sin (x)+\sin (x-2 t)+2 \\
2 e^{2}
\end{array}\right]
$$

5. Consider the symmetric hyperbolic system

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]_{t}+\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]_{x_{1}}+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]_{x_{2}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

(a) Find the smallest ball in \mathbb{R}^{2} in which the domain of dependence of $U(3,4,10)$ will lie. That is, find M such that the value of U at the point $(3,4,10)$ depends at most on the value of the initial data $U\left(x_{1}, x_{2}, 0\right)$ in the ball of radius $10 M$ about $(3,4)$.
Answer: For a symmetric hyperbolic system, the domain of dependence of the solution at a point $\left(\vec{x}_{0}, t_{0}\right)$ is contained within the ball of radius $M t_{0}$ where

$$
M=\max _{|\vec{\xi}|=1, i=1, \ldots, m}\left|\lambda_{i}(\vec{\xi})\right| .
$$

where $\lambda_{i}(\xi), i=1, \ldots, m$ are the m eigenvalues of the matrix

$$
A(\xi)=\sum_{i}^{m} \xi_{i} A_{i} .
$$

Here, for $\xi \in \mathbb{R}^{2}$,

$$
\begin{aligned}
A(\xi) & =\xi_{1} A_{1}+\xi_{2} A_{2} \\
& =\left[\begin{array}{cc}
\xi_{1} & \xi_{2} \\
\xi_{2} & 2 \xi_{1}
\end{array}\right] .
\end{aligned}
$$

The eigenvalues of $A(\xi)$ are given by

$$
\begin{aligned}
& \lambda_{1}=\frac{3 \xi_{1}+\sqrt{\xi_{1}^{2}+4 \xi_{2}^{2}}}{2} \\
& \lambda_{2}=\frac{3 \xi_{1}-\sqrt{\xi_{1}^{2}+4 \xi_{2}^{2}}}{2}
\end{aligned}
$$

Now

$$
\max _{|\vec{\xi}|=1}\left|\lambda_{i}(\vec{\xi})\right|=2, \quad i=1,2
$$

This can be found by maximizing λ_{1}, λ_{2} subject to the constraint $|\vec{\xi}|=1$. Therefore, $M=2$, and consequently, the domain of dependence for the point $(3,4,10)$ is the ball $\left\{(x, y) \in \mathbb{R}^{2}:|x-3|^{2}+|y-4|^{2} \leq(2 \cdot 10)^{2}\right\}$.
(b) Show that the ball you found in part (a) is the smallest ball in which you can guarantee the domain of dependence will lie, by showing there exists a direction $\xi=\left(\xi_{1}, \xi_{2}\right)$, where $|\xi|=1$ for which there exists a plane wave solution $U\left(x_{1}, x_{2}, t\right)=V(x \cdot \xi-M t)$; that is, a plane wave solution which travels at speed M. You don't need to calculate the plane wave solution.
Answer: From part (a), we see $\max _{|\vec{\xi}|=1}\left|\lambda_{1}(\vec{\xi})\right|$ occurs at $\vec{\xi}=(1,0)$, in which case $\lambda_{1}(1,0)=2$. Similarly, $\max _{|\vec{\xi}|=1}\left|\lambda_{2}(\vec{\xi})\right|$ occurs at $\vec{\xi}=(-1,0)$, in which case $\lambda_{2}(\vec{\xi})=-2$. As this is a symmetric hyperbolic equation, we know there are m plane wave solutions for every direction $\xi \in \mathbb{R}^{2}$. In particular, for each $\xi \in \mathbb{R}^{2}$, the m plane wave solutions have speed $\lambda_{i}(\xi)$ for $i=1, \ldots, m$.
To show this explicitly, in our case above, we look for a plane wave solution $\vec{v}(\vec{\xi} \cdot \vec{x}-\sigma t)$ where $\vec{\xi}=(1,0)$. In other words, we are looking for a solution of the form $\vec{v}\left(x_{1}-\sigma t\right)$ for some σ. Plugging this into our system, we have

$$
-\sigma \vec{v}^{\prime}\left(x_{1}-\sigma t\right)+\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \vec{v}^{\prime}\left(x_{1}-\sigma t\right)=\overrightarrow{0}
$$

This means we need to look for a function $\vec{v}^{\prime}\left(x_{1}-\sigma t\right)$ and a value σ such that

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \vec{v}^{\prime}\left(x_{1}-\sigma t\right)=\sigma \vec{v}^{\prime}\left(x_{1}-\sigma t\right) .
$$

In other words, an eigenvector \vec{v}^{\prime} and a corresponding eigenvalue σ for

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

Clearly, 2 is an eigenvalue of this matrix with corrsponding eigenvector \vec{r}_{2}. Letting $\vec{v}^{\prime}\left(x_{1}-\sigma t\right)=\vec{r}_{2}$, we see we have found a plane wave solution which travels in the direction $(1,0)$ with speed 2 .
(c) Find two plane wave solutions which propagate in the direction $\left(\xi_{1}, \xi_{2}\right)=(3 / 5,4 / 5)$; that is, find two general solutions of the form $V_{1}\left(\xi \cdot x-\sigma_{1} t\right), V_{2}\left(\xi \cdot x-\sigma_{2} t\right)$.
Answer: We look for a plane wave solution $\vec{v}(\vec{\xi} \cdot \vec{x}-\sigma t)$ which travels in the direction $\vec{\xi}=(3 / 5,4 / 5)$. We plug

$$
\vec{v}(\vec{\xi} \cdot \vec{x}-\sigma t)=\vec{v}\left(\xi_{1} x_{1}+\xi_{2} x_{2}-\sigma t\right)
$$

into our system. Doing so, we have

$$
-\sigma \vec{v}^{\prime}+\xi_{1} A_{1} \vec{v}^{\prime}+\xi_{2} A_{2} \vec{v}^{\prime}=\overrightarrow{0},
$$

where $\vec{v}^{\prime}=\vec{v}^{\prime}\left(\xi_{1} x_{1}+\xi_{2} x_{2}-\sigma t\right)$

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \\
& A_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
\end{aligned}
$$

Therefore, we need to look for an eigenvector \vec{v}^{\prime} and a corresponding eigenvalue σ of

$$
A(\vec{\xi})=\xi_{1} A_{1}+\xi_{2} A_{2}
$$

at $\vec{\xi}=(3 / 5,4 / 5)$. Now

$$
\begin{aligned}
A(\vec{\xi}) & =\left[\begin{array}{cc}
\xi_{1} & \xi_{2} \\
\xi_{2} & 2 \xi_{1}
\end{array}\right] \\
& =\left(\frac{1}{5}\right)\left[\begin{array}{ll}
3 & 4 \\
4 & 6
\end{array}\right] .
\end{aligned}
$$

The eigenvalues are given by

$$
\begin{aligned}
& \lambda_{1}=\frac{1}{10}(9+\sqrt{73}) \\
& \lambda_{2}=\frac{1}{10}(9-\sqrt{73})
\end{aligned}
$$

with corresponding eigenvectors

$$
\begin{aligned}
& \vec{r}_{1}=\left[\begin{array}{c}
\frac{1}{8}(-3+\sqrt{73}) \\
1
\end{array}\right] \\
& \vec{r}_{2}=\left[\begin{array}{c}
\frac{1}{8}(-3-\sqrt{73}) \\
1
\end{array}\right]
\end{aligned}
$$

Therefore, any function $\vec{v}_{1}^{\prime}\left(\vec{\xi} \cdot \vec{x}-\lambda_{1} t\right)$ which is a multiple of \vec{r}_{1} will be an eigenfunction of $A(\vec{\xi})$, and, therefore, a plane wave solution. (Similarly, any function $\vec{v}_{2}^{\prime}\left(\vec{\xi} \cdot \vec{x}-\lambda_{2} t\right)$ which is a multiple of \vec{r}_{2}.) Therefore, two general plane wave solutions in the direction $\vec{\xi}=(3 / 5,4 / 5)$ with speeds λ_{1} and λ_{2} given above, are of the form

$$
\vec{v}_{1}\left(\vec{\xi} \cdot \vec{x}-\lambda_{1} t\right)=f\left(\vec{\xi} \cdot \vec{x}-\lambda_{1} t\right) \vec{r}_{1},
$$

and

$$
\vec{v}_{2}\left(\vec{\xi} \cdot \vec{x}-\lambda_{2} t\right)=g\left(\vec{\xi} \cdot \vec{x}-\lambda_{2} t\right) \vec{r}_{2}
$$

for arbitrary functions f and g, where \vec{r}_{1} and \vec{r}_{2} are given above.

