Math 220A - Fall 2002
Homework 8 Solutions

1. Consider

U — CAu =0
u(z,0) = ¢(z)
u(z,0) = (x).

Suppose ¢, 1 are supported in the annular region a < |z| < b.

reR3t>0

(a) Find the time 77 > 0 such that u(z,t) is definitely zero for t > T} in the case

when

iojz|>0b
Answer:

. a<|z|<b
Answer:

iii. |z| < a.
Answer:

b
T
C
b
T
C
b
= b
C

(b) Find the time T3 > 0 such that u(x,t) is definitely zero for 0 < ¢t < Ty in the case

when

iojz|>0b
Answer:

i. |z| < a.
Answer:

(c) Consider the same questions for n = 2 dimensions.
Since u(z,t) depends on the values of the initial data in B(x, ct), there

Answer:

T, =

] = b

T2:

a — ||
p

is no time 7} such that we can guarantee that u(x,t) = 0 for all ¢ > T7. In answer

to part (b), we again have

Ty = (Jz| = b)/cif |z| > b

and

Ty = (a—|z|)/cif |z| <al




2. Solve
uy — EAu=0 (1,y,2) Rt >0

u(z,y,2,0) =1
w(z,y,2,0) = 2 + > + 22

Answer: Note: Below z, y and z represent vectors in R®. Our solution is given by
Kirchoft’s formula as

ula, 1) = f B(y) + Voly) - (y — ) + th(y) dS(y)
OB (z,ct)

:f’ 1+ tly2dS(y).
OB (z,ct)

By making a change of variables y = x + ctz, we can rewrite this as

u(z,t) :][ [T+ tja + ctz]*] dS(z)
2B(0,1)

:][ [T+ tx|* + 2ct?z - 2 + A3 2] dS(2).
dB(0,1)

Now

f‘ 1dS(z) = 1
9B(0,1)

f‘ Ha2dS(z) = t|af?
aB(0,1)

]/ 2ct’z - zdS(z) = 0
8B(0,1)

f |22 dS(z) = At
8B(0,1)

Therefore, we conclude that our solution is

u(z,t) = 1+ t|z)? + A2t

3. Solve
uy — FAu=0 (z,y) €R*t>0

u(z,y,0) =0
Ut(fE,y,O) = xQ + y2

Answer: Note: Below, =, y and z represent vectors in R%. The solution is given by
the formula

(e, t) = 2mc2t2 (212 — |y — x[?)1/2

1 / ctp(y) + ct*P(y) + ctVo(y) - (y — x) d
B(z,ct)

1 ct®ly|”
- 242 212 2\1/2 dy
2mcct B(z,ct) (C 1 — ’y - .’13" )

1 ][ ct?|y|?
2 JB@e (2 — |y —x]2)1/2




Now making the change of variables y = = + ctz, we have

1 ct?|z + ctz|?
t) = - d
unt =3 ]{9(0,1) (6 —Jetz?) 72

1][ ct?|z + ctz|?

== — > dz
2 B(0,1) ct(1 — |Z|2>1/2

ot 7[ |z|* + 2ctz - 2 + 2t?|2|?
2 B(0,1) (1— |Z|2)l/2

dz.

Now the first term can be evaluated as follows.

2 2 27
t|m|/ 1 t|:1c|/ / dr do
o5 o T T2 T

= t|z|?.

For the second term, using the fact that z, /(1 — |2|?)!/? is odd with respect to the z;
axis (and similarly z,/(1—|z|?)"/? is odd with respect to the z; axis), we conclude that
the second term is zero.

For the last term, we evaluate as follows,

243 2 23 [
A B / / dr df
21 JB(0,1) (1- ‘Z|2)1/2 1— 7’2 (1—r2)1/2
B 202753
==

Therefore, our solution is given by

2213
(e, t) = tlzf? + 222
3
4. Solve
U(z,0) = &(z)
where
1 10
A=11 1 0
00 2
and
sin(x)
O(x) = 1
o2

Answer: First, we diagonalize our matrix A by looking for our eigenvalues. We look
at det(A — AI) = 0. We see that our eigenvalues are given by A = 0,2. First, for

3



A1 = 0, we see that

110 110
A-MI=A=1|1 1 0f —- |0 0 2
00 2 000
Therefore, an eigenvector associated with \; = 0 is given by v; = [~110]*. Then for
Ao = 2, we have
-1 1 0 1 -1 0
A=-XI=|1 -1 0| =10 0 O
0 0 0 0 0 0
Therefore, we have two linearly independent eigenvectors, vo = [110]7 and vz =
[001]%. Consequently, letting
-1 10
Q=11 10
0 01
and
000
A=10 2 0f,
00 2
we see that
Q'AQ = A.

In particular, plugging A = QAQ ™! into our equation, we have
U+ QAQ™'U, = 0.
Multiplying the equation by @', we have
QUi+ AQ7'U, = 0.

Then, letting V = Q~'U, we have the decoupled initial-value problem

Vi+AV, =0
V

(z,0) = ¥(z)
where
N N —sin(z) + 1
U(z) = Q 'U(2) = 3 sin(2x)2+ 1

We have three linear transport equations. First,

(Ul)t =0
v1(z,0) = %(— sin(x) + 1)



implies

vi(x,t) = %(— sin(z) + 1).

Second,
(UQ)t + 2(1}2)3[; = O
1
vo(z,0) = §(sin(x) +1)
implies
1
vo(z,t) = §(sin(.:1: —2t)+1).
Last,
(Ug)t -+ Q(Ug)x = 0
v3(z,0) = €2
implies
v3(w,t) = €%
Therefore,
—sin(x) +1
VZE sin(z —2t) + 1
2¢?

and U = QQV implies our solution is given by

1 sin(x) + sin(z — 2t)
Ux,t) = 5|~ sin(z) + sing(a: —2t)+2
2e

5. Consider the symmetric hyperbolic system

Uy 1 0] |uy 0 1| [ug {0
DRt A 1 I
(a) Find the smallest ball in R? in which the domain of dependence of U(3, 4, 10) will

lie. That is, find M such that the value of U at the point (3,4,10) depends at
most on the value of the initial data U(z1, x2,0) in the ball of radius 10M about
(3,4).
Answer: For a symmetric hyperbolic system, the domain of dependence of the
solution at a point (&, to) is contained within the ball of radius Mty where

=  max |AZ(_>|
where \;(€), 7 =1,...,m are the m eigenvalues of the matrix
A§) = Z &iA;.
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Here, for £ € R?,
A(E) = &AL+ 64
o g]
§o 26|

The eigenvalues of A(§) are given by
_ 3G+ V& 48

A 5
\, - 36— Vg
2

Now

max [N (€)| =2, =12

€]=1
This can be found by maximizing A;, Ay subject to the constraint |§_] = 1. There-
fore, M = 2, and consequently, the domain of dependence for the point (3,4, 10)
is the ball {(z,y) € R? : [z — 3] + |y — 4]* < (2-10)*}.
Show that the ball you found in part (a) is the smallest ball in which you can
guarantee the domain of dependence will lie, by showing there exists a direc-
tion & = (&1,&2), where |{| = 1 for which there exists a plane wave solution
U(xy,z9,t) = V(x-& — Mt); that is, a plane wave solution which travels at speed
M. You don’t need to calculate the plane wave solution.
Answer: From part (a), we see maxg_, 1A (€)] occurs at € = (1,0), in which

case A1(1,0) = 2. Similarly, maxg_, X2 (€)] occurs at € = (—1,0), in which case

—

Ao(§) = —2. As this is a symmetric hyperbolic equation, we know there are m
plane wave solutions for every direction £ € R%. In particular, for each ¢ € R?,
the m plane wave solutions have speed \;(§) fori=1,...,m.

To show this explicitly, in our case above, we look for a plane wave solution
U(¢ - & — ot) where £ = (1,0). In other words, we are looking for a solution of the
form ©(z; — ot) for some ¢. Plugging this into our system, we have

—ot' (v — ot) + [1 0

This means we need to look for a function ¢'(x; — ot) and a value o such that

Ll) (2)} 7 (21 — ot) = o7 (21 — o).

In other words, an eigenvector ¥ and a corresponding eigenvalue o for

b o

Clearly, 2 is an eigenvalue of this matrix with corrsponding eigenvector 7. Letting
U'(x1 — ot) = 7, we see we have found a plane wave solution which travels in the
direction (1,0) with speed 2.



(¢) Find two plane wave solutions which propagate in the direction (£, &) = (3/5,4/5);
that is, find two general solutions of the form V(£ - x — o1t), Va(§ - x — oat).

Answer: We look for a plane wave solution #(€ -  — ot) which travels in the
direction & = (3/5,4/5). We plug

U(g f— O't) = 17(§1l‘1 + ggl‘g — O't)
into our system. Doing so, we have
—0'2_)), + 511411_)4 + 62142’(7’ == 6,

where v = (&1 + {axo — ot)

10
4= o
01
4y = L 0] .
Therefore, we need to look for an eigenvector ¢ and a corresponding eigenvalue

o of

—

A(§) = &AL + 6 A,
at € = (3/5,4/5). Now

A = Ei 25521}

)]

1
A= E(9+\/ﬁ)

The eigenvalues are given by

Therefore, any function @) (€ - # — Ayt) which is a multiple of 7 will be an eigen-
function of A(g), and, therefore, a plane wave solution. (Similarly, any function
17;(5 - @ — Aot) which is a multiple of 75.) Therefore, two general plane wave so-
lutions in the direction &€ = (3/5,4/5) with speeds A; and Ay given above, are of

the form B B
01(&-7— Mt) = f(§- 7 — M),

7



and . .
172(5 T — )\2t) = 9(5 T — >\2t)7?2

for arbitrary functions f and g, where 7} and 75 are given above.



