Math 220A - Fall 2002
Homework 5 Solutions

. Consider the initial-value problem for the hyperbolic equation

U + Upr — 20Uz = 0 —oco<zr<oo,t>0
u(z,0) = ¢(z)
u(x,0) = P(z).

Use energy methods to show that the domain of dependence of the solution u at the
point (g, t) is the cone {(x,t) € R? : ¢t > 0,29 — 5(tog —t) < x < wg +4(to — t)}.

Answer: For a given function u = u(x,t), define an energy function for this problem

as
I0+4(t0—t) 1
eu(t) = / {—uf + 10u§1 dx.
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(See problem 2 for the motivation behind this derivation.) Now suppose that the initial
data is identically zero in the interval [z — 5tg, xo + 4to], we will show that u(z,t) =0
for 0 <t <ty, x € [wg—5(tg—1),x0+4(to —t)]. Assume u is a solution of (*) such that
¢ and 1) are identically zero in the interval [zq — btg, zo + 4to]. Therefore, €,(0) = 0.
Further,

$0+4(t0—t) 1
el (t) = / [ugtiyy + 20Uy doe — 4 [—u? + 10ui]
zo—5(to—t) 2 r=x0+4(to—1)

1
—5 [—uf + 10@}
2 $21075(t07t)

xo+4(to—t) Hd(to—t)
r=zo+4(to—
_ /m_5(t0_t) [uguy — 20U, 1) da + Qoux“t|z:g;0_5(t0_t)

1
-5 [—uf + 10ui}
x:zo+4(t07t) 2

Io+4(t07t)
= —/ WUy AT — 2 [uf — 10u,u; + 20ugﬂ
zo—5(to—t)

1
—4 [§u§ + 10@}

$=1‘075(t0 7t)
x=.’170+4(t07t)

— g [uf + 8uyuy + 20ugﬂ

= 2 [i — Suu + 1602]
-2 [uf + 10u,u; + 25uﬂ
5

- _§[Ut - 4ux]2|x:a:0+4(t07t) - 2[ut + 5ux]2|x:a:075(t07t)

r=x0 —5(t0—t)

z:a:0+4(t0 —t)

x=x0—5(to—1)

<0.

Therefore, we conclude that e,(t) < 0. But, by definition, e,(t) > 0. Therefore, we
conclude that e, (t) = 0. Therefore, u; = 0 = u, inside this cone. This implies that u



is constant in the cone. But, u is assumed to be identically zero at t = 0. Therefore,
we conclude that © = 0 inside the cone. Therefore, the solution depends at most on
the value of the initial data in the interval [xq — 5(tg — ), 2o +4(to — t)]. (Remark: By
solving the equation, it can be shown that the solution depends on the values of the
initial data in this entire interval.)

. Use energy methods to prove uniqueness of solutions to

U + Uy — 20Uy, = f(x,t) —o00 <z < o00,t>0
u(z,0) = ¢(x)
uy(r,0) = P(x)

assuming that ¢ and ¢ have compact support.

Answer: To find an energy function associated with this PDE, we multiply the
homogeneous equation by u; and integrate over R,

0= / (g + Uy — 20Uy, ) dx
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assuming u has compact support. Therefore, we define an energy for this problem as
follows. For a given function u = u(x,t), we let

r——00
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E,(t) = / iu? + 10u? dz.
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Now suppose there are two solutions u,v of our initial-value problem above. Let
w = u —v. Then w is a solution of

wtt—i—wmt—Zme:O —OO<LU<OO,t>O
w(z,0) =0
wy(z,0) =0

By the method of derivation of the energy function above, we see that E! (t) = 0
(using the fact that the initial data has compact support, and, therefore, the solution
has compact support). But, the initial data is identically zero. Therefore, £, (0) = 0.
We conclude that E,(t) = 0. Therefore, using the fact that the integrand is non-
negative, we conclude that wy(z,t) = 0 = w,(z,t). But, this implies that w = const.
Using the fact that w(z,0) = 0, we conclude that w(z,t) = 0. Therefore, u = v.



3. Consider the initial-value problem for the following hyperbolic equation,

rug — V- (pVu) +qu=F ze€R"t>0
u(z,0) = ¢(z)
ut<x?0) = ¢(5'3')

where r(z),p(z) are positive and ¢(x) is non-negative. Use energy methods to prove
uniqueness of solutions to this problem.

Answer:  First, we derive an energy associated with this PDE. Multiplying the
homogeneous equation by u; and integrating over R", we have

0= / ur(rug — V- (pVu) + qu) dx
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where € is the support of u. If the initial data has compact support, then the solution
will have compact support (because this equation is hyperbolic). Therefore, assuming
u vanishes as |z| — 400, we conclude that

1 1 1
0= [ rtad)e+ gp(Vul)o+ sa(u)da.

For a given function v = u(zx,t), let
1
E,(t) = 5/ ru? + p|Vul* + qu’ d.

By the method of derivation above, we see that if u is a solution of the homogeneous
PDE above, and u vanishes as |x| — 400, we know that E/ (¢) = 0.

Now suppose u and v are both solutions of the inhomogeneous problem stated above.
Let w = u —v. Then w is a solution of

rwy — V- (pVw)+qu=0 zeR"t>0
w(z,0) =0
wy(z,0) = 0.

Therefore, E; (t) = 0. In addition, the initial data is identically zero. Therefore,
E,(0) = 0. We conclude that E,(t) = 0. Therefore, we have w = 0 which implies
u=v.

4. Use Duhamel’s principle to derive formulas for the solutions of the following initial
value problems.

(a)
ur + au, = f(x,t)
u(z,0) = ¢()



i.

ii.

First find the solution operator S(t) associated with the homogeneous equa-

tion.
Answer : The solution to the homogeneous equation is:

U}wm(l’,t) - S(t)gb(l')
= oz —at)

Use S(t) to derive the solution of the inhomogeneous equation.
Answer : We get S(t) from part (i), so by Duhamel’s principle,

u(z,t) = S(t)p(x) + /0 S(t—s)f(x,s)ds
= o(x —at)+ i flz —a(t—s),s)ds
U + Uy — 20Uy, = f(2, 1)

(%) q ulz,0) = ¢(x)
ut(xa 0) = ’QD(I‘)

. Write the equation as a system

U, + AU = F
U0) = &

Answer : Let u; = v, we can write the inhomegeneous wave equation as:

Uy = U,
vy = 20Ugy — Uy + f(2,1)

which can be written in a matrix form as:

HEE RS R

o= (i) o= [ 0] 7= (S ] o= [0

Our equation can be written in matrix form as:

let

U, + AU = F
U0) = ®



ii.

iil.

Find the solution operator S(t) associated with the homogeneous system
d
U0)=o= .
0=o=

Answer : Consider

Ulx,t)=o

then this is the equation:

Upr + Uyt — 20wa =0
u(x,0) = ¢(x)
u(,0) = ()

We know the solution to the homogeneous equation is:

5¢(x + 4t) + 4¢(x — 5t) N 1 /”‘“

t) =
u(z, ) - -

V(y)dy

—5t
The solution of the homogeneous equation is given by

Ul t) = { é{)(5gb(x+4t)+4gb(x—5t +5 [ vy)dy }

(¢ (x +4t) — ¢ (v — 5t)) + (4w(x + 4t) + 5(x — 5t))

In other words, defining the solution operator S(t) as

S(t)® = S(t) { i } _ { 5(5p(x +4t) + 4gz5(x —5t)) + & fx+4t (y)dy

Use the solution operator S(t) to find the solution of the inhomogeneous

system, and use this to find the solution of (*).

Answer : We have found the operator S(t) from above. Use Duhamel’s

principle, as to the in homogeneous problem:

Ulx,t)=S(t)® + /tS(t — s)F(s)ds

Looking at the first component of this vector-valued equation (6), we see this

would imply that:

x+4t z+4(t—s)
u(z,t) = %(5¢(x+4t)+4¢(:c—5t))—l—;/ dy+/ / e

D(p (x +4t) — ¢ (x — 5t)) (4¢($ + 4t) + 5y (x — 5t))

|



5. Use Green’s Theorem to derive the solution of the inhomogeneous wave equation on
the half-line,

Ut — gy = f(,t) 0<z <o
u(z,0) = ¢(x) 0<z <00
u(z,0) = ¢(x) 0<z<oo
U(O,t) = h(t)>

where we assume ¢(0) = ¢(0) = h(0) = 0.

Answer: When x — ¢t > 0, the solution’s domain of dependence does not interact
with the x = 0 axis. Thus the solution is the usual solution to the inhomogeneous
wave equation:

1 T+t 1 z+c(t—s)
u(e,t) = (6 +et) o — )+ o [ wldy+ - (9. )dyds
CJo—ct 2c z—c(t—s)

For x — ¢t < 0, we integrate over the region shown

s
(Xt)

X—=ct | ct—x x-ll-ct

We have by Green’s theorem:

[ | st = [ [ =uivis == | (@udstudy) = ~1+ 74K +1)

where: et
I= [ (uyds +udy) = [ (udy) = [ o)y
L1 L1 ct—x
J = / (Cuyds + ugdy) = / (—cugpdr + ug(—cdt)) = —cu(z, t) + cp(x + ct)
L2 L2
K= [ (Cu,ds+u,dy) = / (cuydy + cus(cds)) = —c(h(t — z) — cu(zx,t))
L3 LS ¢

L= /L4(c2uyds + usdy) = /L4(—cuydy + ug(cds)) = —cp(ct — ) + ch(t — %)

Thus
x+

(e, ) = 5160 +ct) — (et — o) + At~ 0) + 5 " o)y + o / / £(y. 5)dyds

26 ct—x



