Math 220A - Fall 2002
 Homework 3 Solutions

1. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0, t \geq 0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}0 & \text { for } x \leq-1 \\ x+1 & \text { for }-1 \leq x \leq 0 \\ -x+1 & \text { for } 0 \leq x \leq 1 \\ 0 & \text { for } x \geq 1\end{cases}
$$

which satisfies the Rankine-Hugoniot condition and the entropy condition. Show that your solution satisfies the entropy condition. Draw a picture describing your answer, showing the projected characteristics and any shock curves.

Answer: Using the method of characteristics, we see that the projected characteristics are given by the curves $x=\phi(r) t+r$, and, that u is constant along these curves. In particular, we see that the projected characteristic curves are given by

$$
\begin{aligned}
& r<-1 \Longrightarrow \phi(r)=0 \Longrightarrow x=r \\
& -1<r<0 \Longrightarrow \phi(r)=r+1 \Longrightarrow x=(r+1) t+r \\
& 0<r<1 \Longrightarrow \phi(r)=-r+1 \Longrightarrow x=(-r+1) t+r \\
& r>1 \Longrightarrow \phi(r)=0 \Longrightarrow x=r .
\end{aligned}
$$

We notice that these curves do not intersect for $t<1$. Therefore, for $0 \leq t \leq 1$, our solution is given by

$$
u(x, t)=\left\{\begin{array}{rl}
0 & x<-1 \\
\frac{x+1}{t+1} & -1<x<t \\
\frac{1-x}{1-t} & t<x<1 \\
0 & x>1
\end{array}\right.
$$

Now at $t=1$, the projected characteristics intersect. We will introduce a shock curve. Our solution should satisfy $u^{-}=(x+1) /(t+1)$ and $u^{+}=0$. Using the RH jump condition, we have

$$
\begin{aligned}
\xi^{\prime}(t) & =\frac{\frac{\left(u^{-}\right)^{2}}{2}-\frac{\left(u^{+}\right)^{2}}{2}}{u^{-}-u^{+}} \\
& =\frac{(x+1)}{2(t+1)}
\end{aligned}
$$

Solving this differential equation, we see that the equation for the curve of discontinuity is given by $x=\sqrt{2(t+1)}-1$. Notice that $f^{\prime}(u)=u$, and, $u^{-}=(x+1) /(t+1)>0=$ u^{+}. Therefore, the entropy condition is satisfied across this curve of discontinuity.

Finally, we conclude that for $t \geq 1$, our solution is given by

$$
u(x, t)=\left\{\begin{array}{rl}
0 & x<-1 \\
\frac{x+1}{t+1} & -1<x<\sqrt{2(t+1)}-1 \\
0 & x>\sqrt{2(t+1)}-1 .
\end{array}\right.
$$

2. Find the unique weak solution of

$$
\left\{\begin{array}{l}
\left(\frac{u^{2}}{2}\right)_{t}+\left(\frac{u^{3}}{3}\right)_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}1 & x<0 \\ 0 & x>0\end{cases}
$$

Answer: We recall that in order for a function u to be a weak solution of an equation of the form

$$
[g(u)]_{t}+[f(u)]_{x}=0,
$$

we need u to satisfy the jump condition

$$
\xi^{\prime}(t)=\frac{[f(u)]}{[g(u)]}
$$

across any curve of discontinuity. Here $f(u)=u^{3} / 3, g(u)=u^{2} / 2$. We want $u^{-}=1$, $u^{+}=0$. Therefore, the curve of discontinuity must satisfy

$$
\xi^{\prime}(t)=\frac{\frac{1}{3}}{\frac{1}{2}}=\frac{2}{3} .
$$

Therefore, we define u such that

$$
u(x, t)= \begin{cases}1 & x<\frac{2}{3} t \\ 0 & x>\frac{2}{3} t\end{cases}
$$

3. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, t \geq 0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

which satisfies the Rankine-Hugoniot jump condition and the entropy condition, where the initial data

$$
\phi(x)= \begin{cases}1 & \text { if } x<-1 \\ 0 & \text { if }-1<x<0 \\ 3 & \text { if } x>0\end{cases}
$$

Answer: Using the method of characteristics, we see that the projected characteristics satisfy $x=\phi(r) t+r$. In particular, we have

$$
\begin{aligned}
& r<-1 \Longrightarrow \phi(r)=1 \Longrightarrow x=t+r \\
& -1<r<0 \Longrightarrow \phi(r)=0 \Longrightarrow x=r \\
& r>0 \Longrightarrow \phi(r)=3 \Longrightarrow x=3 t+r
\end{aligned}
$$

We notice that projected characteristics intersect immediately at $x=-1$. Therefore, we need to put in a shock curve. We want $u^{-}=1, u^{+}=0$. Therefore, using the RH jump condition, we see that the shock curve $\xi_{1}(t)$ must satisfy

$$
\begin{aligned}
\xi_{1}^{\prime}(t) & =\frac{\frac{\left(u^{-}\right)^{2}}{2}-\frac{\left(u^{+}\right)^{2}}{2}}{u^{-}-u^{+}} \\
& =\frac{1}{2} .
\end{aligned}
$$

Therefore, $\xi_{1}(t)=\frac{1}{2} t-1$. We note that the entropy condition is satisfied along this curve of discontinuity, because

$$
f^{\prime}\left(u^{-}\right)=u^{-}=1>\frac{1}{2}=\sigma>0=u^{+}=f^{\prime}\left(u^{+}\right)
$$

Next, we need to put a rarefaction wave in between $x=0$ and $x=3 t$. This rarefaction wave is given by $u(x, t)=G(x / t)=\left(f^{\prime}\right)^{-1}(x / t)=x / t$. Therefore, our solution is given by

$$
u(x, t)= \begin{cases}1 & x<\frac{1}{2} t-1 \\ 0 & \frac{1}{2} t-1<x<0 \\ \frac{x}{t} & 0<x<3 t \\ 3 & x>3 t\end{cases}
$$

until the shock curve hits the rarefaction wave at $t=2$. Therefore, the solution above is valid for $0 \leq t \leq 2$.
After this time t, we need to put in a new shock curve which will satisfy the RH jump condition. We want $u^{-}=1$ and $u^{+}=x / t$. Therefore, by the RH jump condition, we have

$$
\begin{aligned}
\xi_{2}^{\prime}(t) & =\frac{\frac{\left(u^{-}\right)^{2}}{2}-\frac{\left(u^{+}\right)^{2}}{2}}{u^{-}-u^{+}} \\
& =\frac{\frac{1}{2}-\frac{x^{2}}{2 t^{2}}}{1-\frac{x}{t}} .
\end{aligned}
$$

Simplifying, we arrive at the differential equation

$$
\frac{d x}{d t}=\frac{1}{2}\left(1+\frac{x}{t}\right) .
$$

This is a linear ODE which can be rewritten as

$$
\left(\frac{1}{\sqrt{t}} x\right)^{\prime}=\frac{1}{2 \sqrt{t}},
$$

using the integrating factor $t^{-1 / 2}$. Solving this ODE and using the initial condition $x=0, t=2$, we have

$$
\xi_{2}(t)=t-\sqrt{2 t} .
$$

Therefore, for $t \geq 2$, our solution is given by

$$
u(x, t)= \begin{cases}1 & x<t-\sqrt{2 t} \\ \frac{x}{t} & t-\sqrt{2 t}<x<3 t \\ 3 & x>3 t\end{cases}
$$

4. Consider the following initial-value problem

$$
\left\{\begin{array}{l}
u_{t}-(\cos u)_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Find the unique, weak admissible solution which satisfies the Oleinik entropy condition if the initial conditions are given by
(a)

$$
\phi(x)=\left\{\begin{aligned}
\frac{\pi}{2} & x<0 \\
-\frac{\pi}{2} & x>0
\end{aligned}\right.
$$

Answer: Using the method of characteristics, we see that the projected characteristics are given by $x=\sin (\phi(r)) t+r$. Therefore, we have

$$
\begin{aligned}
& r<0 \Longrightarrow x=t+r \\
& r>0 \Longrightarrow x=-t+r .
\end{aligned}
$$

In particular, the projected characteristics intersect for $t>0$. By drawing a graph of the function $f(u)=-\cos (u)$, we see that $f(u)=-\cos (u), u^{-}=\pi / 2, u^{+}=$ $-\pi / 2$ satisfy the Oleinik entropy condition,

$$
\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{u^{-}-u^{+}} \leq \frac{f\left(u^{-}\right)-f(u)}{u^{-}-u} \quad \forall u \in\left(u^{+}, u^{-}\right)
$$

Therefore, a shock curve is admissible. We know the shock curve must satisfy the RH jump condition. Therefore, we need

$$
\xi^{\prime}(t)=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{u^{-}-u^{+}}=\frac{-\cos (\pi / 2)+\cos (-\pi / 2)}{\pi / 2+\pi / 2}=0 .
$$

Therefore, we conclude that the unique, weak, admissible solution is given by

$$
u(x, t)=\left\{\begin{aligned}
\frac{\pi}{2} & x<0 \\
-\frac{\pi}{2} & x>0
\end{aligned}\right.
$$

(b)

$$
\phi(x)=\left\{\begin{aligned}
\pi & x<0 \\
-\frac{\pi}{2} & x>0
\end{aligned}\right.
$$

Answer: As in part (a), we know the projected characteristics are given by $x=\sin (\phi(r)) t+r$. Therefore,

$$
\begin{aligned}
r<0 & \Longrightarrow x=r \\
r>0 & \Longrightarrow x=-t+r
\end{aligned}
$$

Therefore, the projected characteristics intersect for $t>0$. However, upon looking at the graph of the function $f(u)=-\cos (u)$ between $u^{+}=-\pi / 2$ and $u^{-}=\pi$, we see that the Oleinik entropy condition is not satisfied. Therefore, we cannot prove in a shock between u^{-}and u^{+}. We must use the rubberband method.
In particular, choose u_{2} such that

$$
f^{\prime}\left(u_{2}\right)=\frac{f\left(u_{2}\right)-f\left(u^{+}\right)}{u_{2}-u^{+}}
$$

or, rewritten as

$$
\sin \left(u_{2}\right)=\frac{-\cos \left(u_{2}\right)}{u_{2}+\frac{\pi}{2}}
$$

Then a shock curve will be admissible from u_{2} to u^{+}as the Oleinik entropy condition will be satisfied in this region. This curve will be determined by the RH jump condition. In particular, we will have

$$
\begin{aligned}
\xi^{\prime}(t) & =\frac{f\left(u_{2}\right)-f\left(u^{+}\right)}{u_{2}-u^{+}} \\
& =\frac{-\cos \left(u_{2}\right)}{u_{2}+\frac{\pi}{2}} .
\end{aligned}
$$

Further, we notice that $f(u)=-\cos (u)$ will be invertible in the region $\left(u_{2}, u^{-}\right)=$ $\left(u_{2}, \pi\right)$. Therefore, we can put in a rarefaction wave to go from π to u_{2}.
Therefore, our solution will be defined as follows,

$$
u(x, t)=\left\{\begin{aligned}
\pi & x<0 \\
G\left(\frac{x}{t}\right) & 0<x<\sin \left(u_{2}\right) t \\
-\frac{\pi}{2} & x>\sin \left(u_{2}\right) t
\end{aligned}\right.
$$

where $G(x / t)=\left(f^{\prime}\right)^{-1}(x / t)=\sin ^{-1}(x / t)$ where $\sin (y)$ is restricted to the region u_{2} to π.
5. Consider f, u^{-}, u^{+}shown below.

Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+[f(u)]_{x}=0, \quad t \geq 0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}u^{-} & x<0 \\ u^{+} & x>0\end{cases}
$$

Find the weak solution which satisfies the Oleinik entropy condition.
Answer: We will use the rubberband method. (See picture below.)
Consider u_{2} such that

$$
f^{\prime}\left(u_{2}\right)=\frac{f\left(u^{-}\right)-f\left(u_{2}\right)}{u^{-}-u_{2}}
$$

From the graph we see that for all $u \in\left(u^{-}, u_{2}\right)$,

$$
\frac{f\left(u^{-}\right)-f\left(u_{2}\right)}{u^{-}-u_{2}} \leq \frac{f\left(u^{-}\right)-f(u)}{u^{-}-u} .
$$

Therefore, the Oleinik entropy condition is satisfied for f, u^{-}and u_{2}. In addition, if we put in a curve of discontinuity along the curve $x=f^{\prime}\left(u_{2}\right) t$ such that u jumps from u^{-}to u_{2}, we see that the RH jump condition is satisfied because $d x / d t=f^{\prime}\left(u_{2}\right)=[f(u)] /[u]$. Next, consider u_{3} such that

$$
f^{\prime}\left(u_{3}\right)=\frac{f\left(u_{3}\right)-f\left(u^{+}\right)}{u_{3}-u^{+}}
$$

We see that for $u \in\left(u_{3}, u^{+}\right)$,

$$
\frac{f\left(u_{3}\right)-f\left(u^{+}\right)}{u_{3}-u^{+}} \leq \frac{f\left(u_{3}\right)-f(u)}{u_{3}-u}
$$

Therefore, the Oleinik entropy condition is satisfied for f, u_{3} and u^{+}. In addition, the RH jump condition is satisfied if we define $x=f^{\prime}\left(u_{3}\right) t$ as the curve of discontinuity such that u jumps from u_{3} to u^{+}along this curve, because $d x / d t=f^{\prime}\left(u_{3}\right)=[f(u)] /[u]$. In addition, f^{\prime} is strictly increasing in the interval $\left(u_{3}, u_{2}\right)$. Therefore, f^{\prime} is invertible on that interval. Therefore, we can put a rarefaction wave between u_{3} and u_{2}. Therefore, our solution is defined as

$$
u(x, t)=\left\{\begin{aligned}
u^{-} & x<f^{\prime}\left(u_{2}\right) t \\
G\left(\frac{x}{t}\right) & f^{\prime}\left(u_{2}\right) t<x<f^{\prime}\left(u_{3}\right) t \\
u^{+} & x>f^{\prime}\left(u_{3}\right) t
\end{aligned}\right.
$$

where $G=\left(f^{\prime}\right)^{-1}$ for f restricted to the interval $\left(u_{2}, u_{3}\right)$.

