Math 220A - Fall 2002

Homework 2 Solutions

1. Solve

$$
\left\{\begin{array}{l}
u_{x}^{2} u_{t}-1=0 \\
u(x, 0)=x
\end{array}\right.
$$

Answer: Let

$$
F(p, q, z, x, t)=p^{2} q-1
$$

The set of characteristic equations are given by

$$
\begin{array}{ll}
\frac{d x}{d s}=2 p q & x(r, 0)=r \\
\frac{d t}{d s}=p^{2} & t(r, 0)=0 \\
\frac{d z}{d s}=3 & z(r, 0)=r \\
\frac{d p}{d s}=0 & p(r, 0)=\psi_{1}(r) \\
\frac{d q}{d s}=0 & q(r, 0)=\psi_{2}(r)
\end{array}
$$

where ψ_{1}, ψ_{2} satisfy

$$
\begin{gathered}
\phi^{\prime}(r)=\psi_{1}(r) \\
\psi_{1}^{2} \psi_{2}-1=0 .
\end{gathered}
$$

Therefore,

$$
\psi_{1}(r)=1=\psi_{2}(r) .
$$

Solving this system of ODEs, we have

$$
\begin{aligned}
& p=1 \\
& q=1 \\
& x=2 s+r \\
& t=s \\
& z=3 s+r .
\end{aligned}
$$

Solving for r, s, we find our solution is given by

$$
u(x, t)=z(r(x, t), s(x, t))=x+t
$$

2. Solve

$$
\left\{\begin{array}{l}
u_{t}+u_{x}^{2}+u=0 \\
u(x, 0)=x
\end{array}\right.
$$

Answer: Let

$$
F=q+p^{2}+z
$$

The set of characteristic equations is given by

$$
\begin{array}{ll}
\frac{d x}{d s}=2 p & x(r, 0)=r \\
\frac{d t}{d s}=1 & t(r, 0)=0 \\
\frac{d z}{d s}=q+2 p^{2} & z(r, 0)=r \\
\frac{d p}{d s}=-p & p(r, 0)=\psi_{1}(r) \\
\frac{d q}{d s}=-q & q(r, 0)=\psi_{2}(r)
\end{array}
$$

where ψ_{1} and ψ_{2} satisfy

$$
\begin{aligned}
& \phi^{\prime}=\psi_{1} \gamma_{1}^{\prime}+\psi_{2} \gamma_{2}^{\prime} \\
& \psi_{2}+\psi_{1}^{2}+\phi=0
\end{aligned}
$$

Therefore, we conclude that $\psi_{1}=1$ and $\psi_{2}=-1-r$. Solving our system of equations, we get

$$
\begin{aligned}
& p=e^{-s} \\
& q=(-1-r) e^{-s} \\
& x=-2 e^{-s}+2+r \\
& t=s \\
& z=-e^{-2 s}+(1+r) e^{-s} .
\end{aligned}
$$

Solving for r and s, we see that $s=t, r=x+2 e^{-t}-2$. Therefore, we conclude that our solution is given by

$$
u(x, t)=-e^{-2 t}+\left(1+x+2 e^{-t}-2\right) e^{-t}
$$

or

$$
u(x, t)=\left(x+e^{-t}-1\right) e^{-t} .
$$

3. Assume $(\vec{x}(\vec{r}, s), z(\vec{r}, s), \vec{p}(\vec{r}, s))$ is the solution of the characteristic ODEs for the fully nonlinear first-order equation

$$
\left\{\begin{array}{l}
F(\vec{x}, u, D u)=0 \\
\left.u\right|_{\Gamma}=\phi
\end{array}\right.
$$

which satisfies the initial condition $(\vec{x}(\vec{r}, 0), z(\vec{r}, 0), \vec{p}(\vec{r}, 0))=(\Gamma(\vec{r}), \phi(\vec{r}), \Psi(\vec{r}))$, where (Γ, ϕ, Ψ) is admissible initial data. Show that

$$
\frac{d}{d s} F(\vec{x}, z, \vec{p})=0
$$

Note: This result proves part of the local existence theorem.
Answer: Let

$$
f(s)=F(\vec{x}(\vec{r}, s), z(\vec{r}, s), \vec{p}(\vec{r}, s)) .
$$

By the chain rule,

$$
\frac{d f}{d s}=\sum_{i=1}^{n} F_{x_{i}} \frac{\partial x_{i}}{\partial s}+F_{z} \frac{\partial z}{\partial s}+\sum_{i=1}^{n} F_{p_{i}} \frac{\partial p_{i}}{\partial s}
$$

Then using the characteristic equations that \vec{x}, z, \vec{p} satisfy, we conclude that

$$
\frac{d f}{d s}=\sum_{i=1}^{n} F_{x_{i}} F_{p_{i}}+F_{z} \sum_{i=1}^{n} p_{i} F_{p_{i}}+\sum_{i=1}^{n} F_{p_{i}}\left[-F_{x_{i}}-p_{i} F_{z}\right]=0 .
$$

Remark: Then using the assumption that $f(0)=0$, we conclude that $f(s)=0$.
4. Consider the initial-value problem

$$
(*)\left\{\begin{array}{l}
u_{t}+a u_{x}=0 \quad-\infty<x<\infty, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

We say u is a weak solution of $\left(^{*}\right)$ if u satisfies

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} u\left[v_{t}+a v_{x}\right] d x d t+\int_{-\infty}^{\infty} \phi(x) v(x) d x=0
$$

for all $v \in C^{\infty}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ with compact support. Assume that ϕ is a piecewise C^{1} function. Show that $u(x, t)=\phi(x-a t)$ is a weak solution of $\left({ }^{*}\right)$.
Answer: We assume that ϕ just has one jump discontinuity. We can use a similar argument if ϕ has an arbitrary number of discontinuities. Suppose ϕ has a jump discontinuity at x_{0}. Let $u(x, t)=u^{-}(x, t)=\phi(x-a t)$ to the left of the curve $x-a t=x_{0}$ and let $u(x, t)=u^{+}(x, t)=\phi(x-a t)$ to the right of the curve $x-a t=x_{0}$. Let Ω^{-}be the region to the left of the curve of discontinuity and Ω^{+}be the region to the right. Under the assumption that ϕ has compact support, then we know $u(x, t)=\phi(x-a t)$ will have compact support. By our integration-by-parts formula, we know that

$$
\iint_{\Omega^{-}} u\left[v_{t}+a v_{x}\right] d x d t=-\iint_{\Omega^{-}}\left[u_{t}+a u_{x}\right] v d x d t+\int_{\partial \Omega^{-}}\left[u v \nu_{2}+a u v \nu_{1}\right] d s
$$

where $\vec{\nu}=\left(\nu_{1}, \nu_{2}\right)$ is the outward unit normal to Ω^{-}. On $x-a t=x_{0}$, we calculate that $\vec{\nu}=\left(1+a^{2}\right)^{-1 / 2}(1,-a)$. On $t=0$, we calculate that $\vec{\nu}=(0,-1)$. Therefore, we conclude that

$$
\begin{aligned}
\int_{\partial \Omega^{-}}\left[u v \nu_{2}+a u v \nu_{1}\right] d s & =\int_{x-a t=x_{0}}\left(1+a^{2}\right)^{-1 / 2}[-a u v+a u v] d s+\int_{t=0}[-u v] d s \\
& =\int_{-\infty}^{x_{0}}-u(x, 0) v(x, 0) d x=-\int_{-\infty}^{x_{0}} \phi(x) v(x, 0) d x
\end{aligned}
$$

Therefore, we conclude that

$$
\iint_{\Omega^{-}} u\left[v_{t}+a v_{x}\right] d x d t=-\iint_{\Omega^{-}}\left[u_{t}+a u_{x}\right] v d x d t-\int_{-\infty}^{x_{0}} \phi(x) v(x, 0) d x
$$

Then using the fact that $u(x, t)=\phi(x-a t)$ is smooth in Ω^{-}, we can conclude that $u_{t}+a u_{x}=-a \phi^{\prime}(x-a t)+a \phi^{\prime}(x-a t)=0$ for $(x, t) \in \Omega^{-}$. Therefore, we conclude that

$$
\iint_{\Omega^{-}} u\left[v_{t}+a v_{x}\right] d x d t=-\int_{-\infty}^{x_{0}} \phi(x) v(x, 0) d x
$$

Similarly,

$$
\iint_{\Omega^{+}} u\left[v_{t}+a v_{x}\right] d x d t=-\int_{x_{0}}^{\infty} \phi(x) v(x, 0) d x
$$

Therefore, we conclude that

$$
\int_{0}^{t} \int_{-\infty}^{\infty} u\left[v_{t}+a v_{x}\right] d x d t+\int_{0}^{\infty} \phi(x) v(x, 0) d x=0
$$

meaning u is a weak solution.
5. Consider the initial-value problem

$$
(*)\left\{\begin{array}{l}
{[g(u)]_{t}+[f(u)]_{x}=0 \quad-\infty<x<\infty, t>0} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

We say u is a weak solution of $\left(^{*}\right)$ if u satisfies

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} g(u) v_{t}+f(u) v_{x} d x d t+\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x=0
$$

for all $v \in C^{\infty}(\mathbb{R} \times[0, \infty))$ with compact support. Suppose u is a weak solution of $\left({ }^{*}\right)$ such that u has a jump discontinuity across the curve $x=\xi(t)$, but u is smooth on either side of the curve $x=\xi(t)$. Let $u^{-}(x, t)$ be the value of u to the left of the curve and $u^{+}(x, t)$ be the value of u to the right of the curve. Prove that u must satisfy the condition

$$
\frac{[f(u)]}{[g(u)]}=\xi^{\prime}(t)
$$

across the curve of discontinuity, where

$$
\begin{aligned}
& {[f(u)]=f\left(u^{-}\right)-f\left(u^{+}\right)} \\
& {[g(u)]=g\left(u^{-}\right)-g\left(u^{+}\right)}
\end{aligned}
$$

Answer: If u is a weak solution of $(*)$, then

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t+\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x=0
$$

for all smooth functions $v \in C^{\infty}(\mathbb{R} \times[0, \infty))$ with compact support. Let v be a smooth function such that $v(x, 0)=0$, and break up the first integral into the regions Ω^{-}, Ω^{+} where

$$
\begin{aligned}
& \Omega^{-} \equiv\{(x, t): 0<t<\infty,-\infty<x<\xi(t)\} \\
& \Omega^{+} \equiv\{(x, t): 0<t<\infty, \xi(t)<x<+\infty\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
0=\int_{0}^{\infty} \int_{-\infty}^{\infty} & {\left[g(u) v_{t}+f(u) v_{x}\right] d x d t+\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x } \\
& =\iint_{\Omega^{-}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t+\iint_{\Omega^{+}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t
\end{aligned}
$$

Combining the Divergence Theorem with the fact that v has compact support and $v(x, 0)=0$, we have

$$
\begin{aligned}
\iint_{\Omega^{-}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t=- & \iint_{\Omega^{-}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t \\
& +\int_{x=\xi(t)}\left[g\left(u^{-}\right) v \nu_{2}+f\left(u^{-}\right) v \nu_{1}\right] d s
\end{aligned}
$$

where $\nu=\left(\nu_{1}, \nu_{2}\right)$ is the outward unit normal to Ω^{-}.

Similarly, we see that

$$
\begin{aligned}
\iint_{\Omega^{+}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t=- & \iint_{\Omega^{+}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t \\
& -\int_{x=\xi(t)}\left[g\left(u^{+}\right) v \nu_{2}+f\left(u^{+}\right) v \nu_{1}\right] d s
\end{aligned}
$$

By assumption, u is a weak solution of

$$
[g(u)]_{t}+[f(u)]_{x}=0
$$

and u is smooth on either side of $x=\xi(t)$. Therefore, u is a strong solution on either side of the curve of discontinuity. Consequently, we see that

$$
\iint_{\Omega^{-}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t=0=\iint_{\Omega^{+}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t
$$

Combining these facts, we see that

$$
\int_{x=\xi(t)}\left[g\left(u^{-}\right) v \nu_{2}+f\left(u^{-}\right) v \nu_{1}\right] d s-\int_{x=\xi(t)}\left[g\left(u^{+}\right) v \nu_{2}+f\left(u^{+}\right) v \nu_{1}\right] d s=0
$$

Since this is true for all smooth functions v, we have

$$
g\left(u^{-}\right) \nu_{2}+f\left(u^{-}\right) \nu_{1}=g\left(u^{+}\right) \nu_{2}+f\left(u^{+}\right) \nu_{1},
$$

which implies

$$
\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{g\left(u^{-}\right)-g\left(u^{+}\right)}=-\frac{\nu_{2}}{\nu_{1}} .
$$

Now the curve $x=\xi(t)$ has slope given by the negative reciprocal of the normal to the curve; that is,

$$
\frac{d t}{d x}=\frac{1}{\xi^{\prime}(t)}=-\frac{\nu_{1}}{\nu_{2}}
$$

Therefore,

$$
\xi^{\prime}(t)=-\frac{\nu_{2}}{\nu_{1}}=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{g\left(u^{-}\right)-g\left(u^{+}\right)}=\frac{[f(u)]}{[g(u)]},
$$

as claimed.

