1. Solve

Answer:

Math 220A - Fall 2002
Homework 2 Solutions

uiu; —1=0
u(z,0) = .

F(p7qu7x7t> :p2q_ 1.

The set of characteristic equations are given by

where 1)1, 1 satisfy

Therefore,

4 — 2pq x(r,0) =r
@L=p t(r,0) =0
% =3 2(r,0) =r
% =0 p(r,0) = ¢ (r)
d_g 0 q(r,0) = va(r)

¢'(r) = u(r)
Vi, — 1 =0.

Y1(r) = 1= thp(r).

Solving this system of ODEs, we have

p=1
g=1
r=25s4+r
=5
z=23s+r.

Solving for r, s, we find our solution is given by

2. Solve

Answer:

u(z,t) = z(r(x,t), s(x,t)) =x + t.

{utJrui—I—u:O

u(z,0) = .

F=q+p*+z



The set of characteristic equations is given by

F=2 a(r,0) =r
“=1 t(r,0) =0
%Zq—l—Qp2 2(r,0)=r
g—i’ =—p p(r,0) = ¢ (r)
w=-q q(r,0) = th(r)
where 1, and vy satisfy
¢ =17y + s
Uy + Y7+ 6 =0.
Therefore, we conclude that ¢y = 1 and ¢ = —1 —r. Solving our system of equations,
we get
p=e¢’
g=(-1—=r)e*
r=—-2¢°"+2+r
t=s

z=—e 2+ (1+7)e "

t

Solving for r and s, we see that s = ¢, r = x + 2e™" — 2. Therefore, we conclude that

our solution is given by
u(z,t) = -+ (1+z+2" =2

or

u(z,t) = (z+e " —1)e "

. Assume (Z(7, s), z(7, s), p(7, s)) is the solution of the characteristic ODEs for the fully
nonlinear first-order equation

F(Z,u,Du) =0
ulp = ¢

which satisfies the initial condition (Z(7,0), 2(7,0), p(7,0)) = (I'(7), ¢(r), U(r)), where
(T, ¢, V) is admissible initial data. Show that

d
%F(f,z,ﬁ) =0.

Note: This result proves part of the local existence theorem.

Answer: Let



By the chain rule,
ds 21: * 0s + ds + 121: “ Os
Then using the characteristic equations that ¥, z, p’ satisfy, we conclude that
df u " n
%:E:&j@+g§}w@+zynkgfmﬁgzg
i=1 i=1 i=1

Remark: Then using the assumption that f(0) = 0, we conclude that f(s) = 0.
. Consider the initial-value problem

(){ut+au$:0 —oo < <oo,t>0

u(z,0) = ¢(x)

We say u is a weak solution of (*) if u satisfies

/OOO /_Z ulvy + av,] dx dt + /_Z o(2)v(z) dz = 0

for all v € C*(R" x [0,00)) with compact support. Assume that ¢ is a piecewise C!
function. Show that u(z,t) = ¢(x — at) is a weak solution of (*).

Answer: We assume that ¢ just has one jump discontinuity. We can use a similar
argument if ¢ has an arbitrary number of discontinuities. Suppose ¢ has a jump
discontinuity at zo. Let u(x,t) = u™(x,t) = ¢(z—at) to the left of the curve z—at = x
and let u(z,t) = ut(z,t) = ¢(x — at) to the right of the curve z — at = xy. Let Q™ be
the region to the left of the curve of discontinuity and Q* be the region to the right.
Under the assumption that ¢ has compact support, then we know wu(z,t) = ¢(x — at)
will have compact support. By our integration-by-parts formula, we know that

// ulvy + av, ] dr dt = — // [us + aug)v de dt + / [uvry + auvry ] ds
- - 20~

where /' = (v, 1) is the outward unit normal to 2. On x — at = x(, we calculate
that 7 = (1 4+ a?)"%2(1, —a). On t = 0, we calculate that 7 = (0, —1). Therefore, we
conclude that

t=

:/mﬂmmmﬁmmz—/iaﬂmm&m

—0o0

/ [uvry + auvry] ds = / (1+ a®)~ V[ —auv + auv] ds + / [—uv] ds
o0~ r—at=xq

Therefore, we conclude that

// ulvy + avg| dr dt = — //[ut + aug)v dx dt — /_z o(z)v(x,0) d.
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Then using the fact that u(x,t) = ¢(z — at) is smooth in Q~, we can conclude that
U+ au, = —ad' (v — at) + ad' (v — at) = 0 for (x,t) € Q. Therefore, we conclude that

[
//Q+ (v + av,] dz dt = / o(x

Therefore, we conclude that

/t /00 ulvy + av,] dx dt + /00 o(x)v(x,0)dz =0,
0 J—-oo 0

meaning u is a weak solution.

Similarly,

. Consider the initial-value problem

() { g + [f(u)]. =0 —oc0o<x<o00,t>0
u(z,0) = é(z)

We say u is a weak solution of (*) if u satisfies

o0

/ / w)vy + f(u)v, dedt + / g(p(z))v(x,0)dz =0
for all v € C*(R x [0, 00)) with compact support. Suppose u is a weak solution of (*)
such that u has a jump discontinuity across the curve x = £(t), but u is smooth on
either side of the curve x = £(t). Let u™(z,t) be the value of u to the left of the curve
and u™(x,t) be the value of u to the right of the curve. Prove that u must satisfy the
condition
f (w)]

[o(w)]

across the curve of discontinuity, where

=£(t)

Answer: If u is a weak solution of (*), then

/ / o+ )vm]d:vdtJr/oo o(6(x))v(x, 0) dz = 0

—00

for all smooth functions v € C*(R x [0, 00)) with compact support. Let v be a smooth
function such that v(x,0) = 0, and break up the first integral into the regions Q—, QF
where

O
O =

(x,t):0<t<o0, —oco<ax<E(t)}
(x,1): 0 <t <o0,(t) <x<+o0}.

{
{



Therefore,

0= /O b /_ Z[g(u)vt—i— Fuy,] da dt + /_ Z o((x))o(x, 0) da

B // oo+ flujvs] do dt + / /Q lg(wve+ f(u)or] do dt.

Combining the Divergence Theorem with the fact that v has compact support and
v(z,0) = 0, we have

// w)vy + f(u)v,] dedt = // (w))z|vdxdt

/ lg(uYovs + f(u™Yorn] ds
x=£(t)

where v = (v, 119) is the outward unit normal to Q.

t
J x= (1)

Similarly, we see that

/ /Q lgufue + flujuc dodt = = / /Q o))+ (f(u))Jo dadt

—/ [g(uT)vve + f(u™)vry] ds.
z=¢(t)
By assumption, u is a weak solution of

[g(w)]e + [f(u)], =0

and u is smooth on either side of = £(¢). Therefore, u is a strong solution on either
side of the curve of discontinuity. Consequently, we see that

J[ totn+ Gyodsa=0= [ fgtp+ ). Jodsa

Combining these facts, we see that
/ [g(u)vvy + f(u™)vrn]ds — / [g(u)vvy + f(ut)vry]ds = 0.
z=£(t) z=¢(t)

5



Since this is true for all smooth functions v, we have

gu e+ f(u )y = g(u)ve + fu" ),
which implies
)= Jt)
gu™) —g(u®)  wn
Now the curve x = £(t) has slope given by the negative reciprocal of the normal to the
curve; that is,

a_1 _n
dr &) w
Therefore, [ |
e f) = f)  [f)
S T ) —gwh) )
as claimed.



