
Math 220A - Fall 2002
Homework 2 Solutions

1. Solve {
u2

xut − 1 = 0

u(x, 0) = x.

Answer: Let
F (p, q, z, x, t) = p2q − 1.

The set of characteristic equations are given by

dx
ds

= 2pq x(r, 0) = r
dt
ds

= p2 t(r, 0) = 0
dz
ds

= 3 z(r, 0) = r
dp
ds

= 0 p(r, 0) = ψ1(r)
dq
ds

= 0 q(r, 0) = ψ2(r)

where ψ1, ψ2 satisfy

φ′(r) = ψ1(r)

ψ2
1ψ2 − 1 = 0.

Therefore,

ψ1(r) = 1 = ψ2(r).

Solving this system of ODEs, we have

p = 1

q = 1

x = 2s + r

t = s

z = 3s + r.

Solving for r, s, we find our solution is given by

u(x, t) = z(r(x, t), s(x, t)) = x + t.

2. Solve {
ut + u2

x + u = 0

u(x, 0) = x.

Answer: Let
F = q + p2 + z.
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The set of characteristic equations is given by

dx
ds

= 2p x(r, 0) = r
dt
ds

= 1 t(r, 0) = 0
dz
ds

= q + 2p2 z(r, 0) = r
dp
ds

= −p p(r, 0) = ψ1(r)
dq
ds

= −q q(r, 0) = ψ2(r)

where ψ1 and ψ2 satisfy

φ′ = ψ1γ
′
1 + ψ2γ

′
2

ψ2 + ψ2
1 + φ = 0.

Therefore, we conclude that ψ1 = 1 and ψ2 = −1− r. Solving our system of equations,
we get

p = e−s

q = (−1− r)e−s

x = −2e−s + 2 + r

t = s

z = −e−2s + (1 + r)e−s.

Solving for r and s, we see that s = t, r = x + 2e−t − 2. Therefore, we conclude that
our solution is given by

u(x, t) = −e−2t + (1 + x + 2e−t − 2)e−t

or
u(x, t) = (x + e−t − 1)e−t.

3. Assume (~x(~r, s), z(~r, s), ~p(~r, s)) is the solution of the characteristic ODEs for the fully
nonlinear first-order equation

{
F (~x, u,Du) = 0

u|Γ = φ

which satisfies the initial condition (~x(~r, 0), z(~r, 0), ~p(~r, 0)) = (Γ(~r), φ(~r), Ψ(~r)), where
(Γ, φ, Ψ) is admissible initial data. Show that

d

ds
F (~x, z, ~p) = 0.

Note: This result proves part of the local existence theorem.

Answer: Let
f(s) = F (~x(~r, s), z(~r, s), ~p(~r, s)).
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By the chain rule,

df

ds
=

n∑
i=1

Fxi

∂xi

∂s
+ Fz

∂z

∂s
+

n∑
i=1

Fpi

∂pi

∂s
.

Then using the characteristic equations that ~x, z, ~p satisfy, we conclude that

df

ds
=

n∑
i=1

Fxi
Fpi

+ Fz

n∑
i=1

piFpi
+

n∑
i=1

Fpi
[−Fxi

− piFz] = 0.

Remark: Then using the assumption that f(0) = 0, we conclude that f(s) = 0.

4. Consider the initial-value problem

(∗)
{

ut + aux = 0 −∞ < x < ∞, t > 0
u(x, 0) = φ(x)

We say u is a weak solution of (*) if u satisfies

∫ ∞

0

∫ ∞

−∞
u[vt + avx] dx dt +

∫ ∞

−∞
φ(x)v(x) dx = 0

for all v ∈ C∞(Rn × [0,∞)) with compact support. Assume that φ is a piecewise C1

function. Show that u(x, t) = φ(x− at) is a weak solution of (*).

Answer: We assume that φ just has one jump discontinuity. We can use a similar
argument if φ has an arbitrary number of discontinuities. Suppose φ has a jump
discontinuity at x0. Let u(x, t) = u−(x, t) = φ(x−at) to the left of the curve x−at = x0

and let u(x, t) = u+(x, t) = φ(x− at) to the right of the curve x− at = x0. Let Ω− be
the region to the left of the curve of discontinuity and Ω+ be the region to the right.
Under the assumption that φ has compact support, then we know u(x, t) = φ(x− at)
will have compact support. By our integration-by-parts formula, we know that

∫∫

Ω−
u[vt + avx] dx dt = −

∫∫

Ω−
[ut + aux]v dx dt +

∫

∂Ω−
[uvν2 + auvν1] ds

where ~ν = (ν1, ν2) is the outward unit normal to Ω−. On x − at = x0, we calculate
that ~ν = (1 + a2)−1/2(1,−a). On t = 0, we calculate that ~ν = (0,−1). Therefore, we
conclude that

∫

∂Ω−
[uvν2 + auvν1] ds =

∫

x−at=x0

(1 + a2)−1/2[−auv + auv] ds +

∫

t=0

[−uv] ds

=

∫ x0

−∞
−u(x, 0)v(x, 0) dx = −

∫ x0

−∞
φ(x)v(x, 0) dx.

Therefore, we conclude that
∫∫

Ω−
u[vt + avx] dx dt = −

∫∫

Ω−
[ut + aux]v dx dt−

∫ x0

−∞
φ(x)v(x, 0) dx.
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Then using the fact that u(x, t) = φ(x − at) is smooth in Ω−, we can conclude that
ut + aux = −aφ′(x− at) + aφ′(x− at) = 0 for (x, t) ∈ Ω−. Therefore, we conclude that

∫∫

Ω−
u[vt + avx] dx dt = −

∫ x0

−∞
φ(x)v(x, 0) dx.

Similarly, ∫∫

Ω+

u[vt + avx] dx dt = −
∫ ∞

x0

φ(x)v(x, 0) dx.

Therefore, we conclude that
∫ t

0

∫ ∞

−∞
u[vt + avx] dx dt +

∫ ∞

0

φ(x)v(x, 0) dx = 0,

meaning u is a weak solution.

5. Consider the initial-value problem

(∗)
{

[g(u)]t + [f(u)]x = 0 −∞ < x < ∞, t > 0
u(x, 0) = φ(x)

We say u is a weak solution of (*) if u satisfies
∫ ∞

0

∫ ∞

−∞
g(u)vt + f(u)vx dx dt +

∫ ∞

−∞
g(φ(x))v(x, 0) dx = 0

for all v ∈ C∞(R× [0,∞)) with compact support. Suppose u is a weak solution of (*)
such that u has a jump discontinuity across the curve x = ξ(t), but u is smooth on
either side of the curve x = ξ(t). Let u−(x, t) be the value of u to the left of the curve
and u+(x, t) be the value of u to the right of the curve. Prove that u must satisfy the
condition

[f(u)]

[g(u)]
= ξ′(t)

across the curve of discontinuity, where

[f(u)] = f(u−)− f(u+)

[g(u)] = g(u−)− g(u+).

Answer: If u is a weak solution of (*), then
∫ ∞

0

∫ ∞

−∞
[g(u)vt + f(u)vx] dx dt +

∫ ∞

−∞
g(φ(x))v(x, 0) dx = 0

for all smooth functions v ∈ C∞(R× [0,∞)) with compact support. Let v be a smooth
function such that v(x, 0) = 0, and break up the first integral into the regions Ω−, Ω+

where

Ω− ≡ {(x, t) : 0 < t < ∞, −∞ < x < ξ(t)}
Ω+ ≡ {(x, t) : 0 < t < ∞, ξ(t) < x < +∞}.

4



Therefore,

0 =

∫ ∞

0

∫ ∞

−∞
[g(u)vt + f(u)vx] dx dt +

∫ ∞

−∞
g(φ(x))v(x, 0) dx

=

∫∫

Ω−
[g(u)vt + f(u)vx] dx dt +

∫∫

Ω+

[g(u)vt + f(u)vx] dx dt.

Combining the Divergence Theorem with the fact that v has compact support and
v(x, 0) = 0, we have

∫∫

Ω−
[g(u)vt + f(u)vx] dx dt = −

∫∫

Ω−
[(g(u))t + (f(u))x]v dx dt

+

∫

x=ξ(t)

[g(u−)vν2 + f(u−)vν1] ds

where ν = (ν1, ν2) is the outward unit normal to Ω−.

x

t
x= ξ(t)

u=u

u=u

+

-

Ω

Ω

−

+

ν ν1 2(  ,  )

Similarly, we see that
∫∫

Ω+

[g(u)vt + f(u)vx] dx dt = −
∫∫

Ω+

[(g(u))t + (f(u))x]v dx dt

−
∫

x=ξ(t)

[g(u+)vν2 + f(u+)vν1] ds.

By assumption, u is a weak solution of

[g(u)]t + [f(u)]x = 0

and u is smooth on either side of x = ξ(t). Therefore, u is a strong solution on either
side of the curve of discontinuity. Consequently, we see that

∫∫

Ω−
[(g(u))t + (f(u))x]v dx dt = 0 =

∫∫

Ω+

[(g(u))t + (f(u))x]v dx dt.

Combining these facts, we see that
∫

x=ξ(t)

[g(u−)vν2 + f(u−)vν1] ds−
∫

x=ξ(t)

[g(u+)vν2 + f(u+)vν1] ds = 0.
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Since this is true for all smooth functions v, we have

g(u−)ν2 + f(u−)ν1 = g(u+)ν2 + f(u+)ν1,

which implies
f(u−)− f(u+)

g(u−)− g(u+)
= −ν2

ν1

.

Now the curve x = ξ(t) has slope given by the negative reciprocal of the normal to the
curve; that is,

dt

dx
=

1

ξ′(t)
= −ν1

ν2

.

Therefore,

ξ′(t) = −ν2

ν1

=
f(u−)− f(u+)

g(u−)− g(u+)
=

[f(u)]

[g(u)]
,

as claimed.
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