Math 220A - Fall 2002

Homework 8

Due Friday, December 6, 2002

1. Consider

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad x \in \mathbb{R}^{3}, t>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

Suppose ϕ, ψ are supported in the annular region $a<|x|<b$.
(a) Find the time $T_{1}>0$ such that $u(x, t)$ is definitely zero for $t>T_{1}$ in the case when
i. $|x|>b$
ii. $a<|x|<b$
iii. $|x|<a$.
(b) Find the time $T_{2}>0$ such that $u(x, t)$ is definitely zero for $0<t<T_{2}$ in the case when
i. $|x|>b$
ii. $|x|<a$.
(c) Consider the same questions for $n=2$ dimensions.
2. Solve

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad(x, y, z) \in \mathbb{R}^{3}, t>0 \\
u(x, y, z, 0)=1 \\
u_{t}(x, y, z, 0)=x^{2}+y^{2}+z^{2}
\end{array}\right.
$$

3. Solve

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} \Delta u=0 \quad(x, y) \in \mathbb{R}^{2}, t>0 \\
u(x, y, 0)=0 \\
u_{t}(x, y, 0)=x^{2}+y^{2}
\end{array}\right.
$$

4. Solve

$$
\left\{\begin{array}{l}
U_{t}+A U_{x}=0 \\
U(x, 0)=\Phi(x)
\end{array}\right.
$$

where

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

and

$$
\Phi(x)=\left[\begin{array}{c}
\sin (x) \\
1 \\
e^{2}
\end{array}\right]
$$

5. Consider the symmetric hyperbolic system

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]_{t}+\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]_{x_{1}}+\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]_{x_{2}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(a) Find the smallest ball in \mathbb{R}^{2} in which the domain of dependence of $U(3,4,10)$ will lie. That is, find M such that the value of U at the point $(3,4,10)$ depends at most on the value of the initial data $U\left(x_{1}, x_{2}, 0\right)$ in the ball of radius $10 M$ about $(3,4)$.
(b) Show that the ball you found in part (a) is the smallest ball in which you can guarantee the domain of dependence will lie, by showing there exists a direction $\xi=\left(\xi_{1}, \xi_{2}\right)$, where $|\xi|=1$ for which there exists a plane wave solution $U\left(x_{1}, x_{2}, t\right)=V(x \cdot \xi-M t)$; that is, a plane wave solution which travels at speed M. You don't need to calculate the plane wave solution.
(c) Find two plane wave solutions which propagate in the direction $\left(\xi_{1}, \xi_{2}\right)=(3 / 5,4 / 5)$; that is, find two general solutions of the form $V_{1}\left(\xi \cdot x-\sigma_{1} t\right), V_{2}\left(\xi \cdot x-\sigma_{2} t\right)$.

