Math 220A - Fall 2002

Homework 7
Due Friday, November 22, 2002

1. Suppose that the series

$$
\sum_{n=1}^{\infty} f_{n}(x)
$$

converges uniformly on $[a, b]$ to $f(x)$. Show that

$$
\sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

provided f_{n} and f are integrable on $[a, b]$.
2. Suppose that f is in $C^{2}([-L, L])$ and satisfies $f(L)=f(-L)$.
(a) Show that, for some positive constant C, the Fourier coefficients satisfy

$$
\left|A_{n}\right| \leq \frac{C}{n^{2}} \quad \text { and } \quad\left|B_{n}\right| \leq \frac{C}{n^{2}}
$$

for all integers $n \geq 1$.
(b) Show that the Fourier series for f converges absolutely at each point x in $[-L, L]$. Note: You do not need to prove convergence to $f(x)$.
3. (a) Calculate the Fourier sine series for $f(x)=\cos (x)$ on the interval $[0, \pi]$.
(b) Justify that the Fourier sine series obtained in part (a) converges to $\cos (x)$ pointwise on $(0, \pi)$ but not uniformly on $[0, \pi]$.
(c) Show that term-by-term differentiation fails.
4. Solve

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=e^{t} \sin (5 x) \quad 0<x<\pi \\
u(x, 0)=0 \\
u_{t}(x, 0)=\sin (3 x) \\
u(0, t)=0=u(\pi, t)
\end{array}\right.
$$

5. Solve

$$
\left\{\begin{array}{lc}
u_{t t}-u_{x x}=0 & 0<x<\pi \\
u(x, 0)=0 & \\
u_{t}(x, 0)=0 & \\
u(0, t)=g(t) & \\
u_{x}(\pi, t)+u(\pi, t)=h(t) &
\end{array}\right.
$$

