Math 220A - Fall 2002
 Homework 6 Due Friday, November 15, 2002

1. Use the method of reflection to solve the initial-boundary value problem on the interval $0<x<l$ with Dirichlet boundary conditions,

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=0 & 0<x<l \\ u(x, 0)=0 & 0<x<l \\ u_{t}(x, 0)=x & 0<x<l \\ u(0, t)=0=u(l, t) . & \end{cases}
$$

In particular, calculate the explicit solution of u in regions R_{1}, R_{2}, R_{3} shown below.

2. Do the same thing as in problem 1, except now for the Neumann boundary conditions. That is, use the method of reflection to solve the initial-boundary value problem on the interval $0<x<l$ with Neumann boundary conditions,

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=0 & 0<x<l \\ u(x, 0)=0 & 0<x<l \\ u_{t}(x, 0)=x & 0<x<l \\ u_{x}(0, t)=0=u_{x}(l, t) . & \end{cases}
$$

Write the explicit solution in the same three regions as shown in problem 1.
3. Use Duhamel's principle to find the solution of the inhomogeneous wave equation on the half-line with Neumann boundary conditions

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=f(x, t), & 0<x<\infty \\ u(x, 0)=\phi(x) & 0<x<\infty \\ u_{t}(x, 0)=\psi(x) & 0<x<\infty \\ u_{x}(0, t)=0 . & \end{cases}
$$

In particular, introducing a new function $v=u_{t}$, rewrite the equation as the system

$$
\begin{cases}U_{t}+A U=F & 0<x<\infty \\
U(x, 0)=\Phi(x) & 0<x<\infty \\
U_{x}(0, t)=\left[\begin{array}{l}
u_{x}(0, t) \\
v_{x}(0, t)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] & \end{cases}
$$

where

$$
\begin{array}{ll}
U=\left[\begin{array}{l}
u \\
v
\end{array}\right] & A=\left[\begin{array}{cc}
0 & -1 \\
-c^{2} \partial_{x}^{2} & 0
\end{array}\right] \\
F=\left[\begin{array}{l}
0 \\
f
\end{array}\right] & \Phi=\left[\begin{array}{c}
\phi \\
\psi
\end{array}\right] .
\end{array}
$$

(a) Find the solution operator $S(t)$ associated with the homogeneous system

$$
\begin{cases}U_{t}+A U=0 & 0<x<\infty \\
U(x, 0)=\Phi(x) & 0<x<\infty \\
U_{x}(0, t)=\left[\begin{array}{l}
0 \\
0
\end{array}\right] & \end{cases}
$$

(b) Use $S(t)$ to construct a solution of the inhomogeneous system.
(c) Use the solution of the inhomogeneous system to solve the inhomogeneous wave equation on the half-line with Neumann boundary conditions.
4. Use separation of variables to solve

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=0 & 0<x<l, t>0 \\ u(x, 0)=x(x-l)^{2} & 0<x<l \\ u_{t}(x, 0)=0 & 0<x<l \\ u(0, t)=0, u_{x}(l, t)=0 . & \end{cases}
$$

5. Consider the eigenvalue problem,

$$
\left\{\begin{array}{l}
-X^{\prime \prime}=\lambda X \\
X^{\prime}(0)+a X(0)=0 \\
X(1)=0
\end{array}\right.
$$

(a) Find all positive eigenvalues. Show graphically that there is an infinite sequence of positive eigenvalues $\lambda_{n} \rightarrow+\infty$.
(b) For what values of a (if any) is zero an eigenvalue?
(c) Show that if $a \leq 1$ there are no negative eigenvalues, while if $a>1$ there is one negative eigenvalue.
6. Use separation of variables to solve

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}+\gamma^{2} u=0, \quad 0<x<l, t \geq 0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x) \\
u(0, t)=0=u(l, t), \quad t \geq 0
\end{array}\right.
$$

where $\gamma>0$.

