Math 220a - Fall 2002
 Homework 4
 Due Friday, Oct. 25, 2002

1. Classify the following equations as elliptic, parabolic, or hyperbolic.
(a) $2 u_{x x}+2 u_{x y}+2 u_{x z}+3 u_{y y}-4 u_{y z}+3 u_{z z}=0$
(b) $2 u_{x z}+u_{y y}=0$
(c) $7 u_{x x}-10 u_{x y}-22 u_{y z}+7 u_{y y}-16 u_{x z}-5 u_{z z}=0$
2. Show that every elliptic equation of the form

$$
a u_{x x}+b u_{x y}+c u_{y y}+d u_{x}+e u_{y}+f u=g(x, y)
$$

where $b^{2}-4 a c<0$ can be brought into the form

$$
\tilde{u}_{\xi \xi}+\tilde{u}_{\eta \eta}+k \tilde{u}=F(\xi, \eta)
$$

through a change of variables. In particular, first give an appropriate linear change of variables to show the equation can be written in the form

$$
u_{\xi \xi}+u_{\eta \eta}+\alpha u_{\xi}+\beta u_{\eta}+\gamma u=h(\xi, \eta)
$$

for some constants α, β, γ. Then introduce a change of variables for the dependent variable u to eliminate the first derivative terms, to show that the equation can be written in the form

$$
\tilde{u}_{\xi \xi}+\tilde{u}_{\eta \eta}+k \tilde{u}=F(\xi, \eta) .
$$

3. Reduce the following second-order equation to a system of first-order equations

$$
u_{t t}-4 u_{x t}-5 u_{x x}=0
$$

Then use the method of characteristics to derive the general solution.
4. Consider the IVP

$$
(*)\left\{\begin{array}{l}
u_{t t}+u_{x t}-12 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

(a) Make a change of variables to reduce the PDE to canonical form

$$
u_{\xi \xi}-u_{\eta \eta}=0
$$

Write the general solution of

$$
u_{t t}+u_{x t}-12 u_{x x}=0
$$

(b) Solve the IVP $(*)$.
5. We say u is a weak solution of the wave equation,

$$
\left\{\begin{array}{l}
u_{t t}-u_{x x}=0 \quad-\infty<x<\infty, t>0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

if

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} u\left[v_{t t}-v_{x x}\right] d x d t+\int_{-\infty}^{\infty} \phi(x) v_{t}(x, 0) d x-\int_{-\infty}^{\infty} \psi(x) v(x, 0) d x=0
$$

for all $v \in C^{\infty}(\mathbb{R} \times[0, \infty))$ with compact support. Let f be a piecewise continuous function with a jump at y_{0}. Show that $u(x, t)=f(x+t)$ is a weak solution of the wave equation. (Note: Similarly it can be shown that a piecewise continuous function of the form $g(x-t)$ is also a weak solution.)

