Math 220A - Fall 2002

Homework 3

Due Friday, Oct. 18, 2002

1. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0, t \geq 0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}0 & \text { for } x \leq-1 \\ x+1 & \text { for }-1 \leq x \leq 0 \\ -x+1 & \text { for } 0 \leq x \leq 1 \\ 0 & \text { for } x \geq 1\end{cases}
$$

which satisfies the Rankine-Hugoniot condition and the entropy condition. Show that your solution satisfies the entropy condition. Draw a picture describing your answer, showing the projected characteristics and any shock curves.
2. Find the unique weak solution of

$$
\left\{\begin{array}{l}
\left(\frac{u^{2}}{2}\right)_{t}+\left(\frac{u^{3}}{3}\right)_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}1 & x<0 \\ 0 & x>0\end{cases}
$$

3. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, t \geq 0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

which satisfies the Rankine-Hugoniot jump condition and the entropy condition, where the initial data

$$
\phi(x)= \begin{cases}1 & \text { if } x<-1 \\ 0 & \text { if }-1<x<0 \\ 3 & \text { if } x>0\end{cases}
$$

4. Consider the following initial-value problem

$$
\left\{\begin{array}{l}
u_{t}-(\cos u)_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

Find the unique, weak admissible solution which satisfies the Oleinik entropy condition if the initial conditions are given by
(a)

$$
\phi(x)=\left\{\begin{aligned}
\frac{\pi}{2} & x<0 \\
-\frac{\pi}{2} & x>0
\end{aligned}\right.
$$

(b)

$$
\phi(x)=\left\{\begin{array}{rr}
\pi & x<0 \\
-\frac{\pi}{2} & x>0
\end{array}\right.
$$

5. Consider f, u^{-}, u^{+}shown below.

Consider the initial-value problem

$$
\left\{\begin{array}{l}
u_{t}+[f(u)]_{x}=0, \quad t \geq 0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}u^{-} & x<0 \\ u^{+} & x>0\end{cases}
$$

Find the weak solution which satisfies the Oleinik entropy condition.

