Math 220A - Fall 2002

Homework 2

Due Friday, Oct. 11, 2002

1. Solve

$$
\left\{\begin{array}{l}
u_{x}^{2} u_{t}-1=0 \\
u(x, 0)=x
\end{array}\right.
$$

2. Solve

$$
\left\{\begin{array}{l}
u_{t}+u_{x}^{2}+u=0 \\
u(x, 0)=x
\end{array}\right.
$$

3. Assume $(\vec{x}(\vec{r}, s), z(\vec{r}, s), \vec{p}(\vec{r}, s))$ is the solution of the characteristic ODEs for the fully nonlinear first-order equation

$$
\left\{\begin{array}{l}
F(\vec{x}, u, D u)=0 \\
\left.u\right|_{\Gamma}=\phi
\end{array}\right.
$$

which satisfies the initial condition $(\vec{x}(\vec{r}, 0), z(\vec{r}, 0), \vec{p}(\vec{r}, 0))=(\Gamma(\vec{r}), \phi(\vec{r}), \Psi(\vec{r}))$, where (Γ, ϕ, Ψ) is admissible initial data. Show that

$$
\frac{d}{d s} F(\vec{x}, z, \vec{p})=0
$$

Note: This result proves part of the local existence theorem.
4. Consider the initial-value problem

$$
(*)\left\{\begin{array}{l}
u_{t}+a u_{x}=0 \quad-\infty<x<\infty, t>0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

We say u is a weak solution of $\left({ }^{*}\right)$ if u satisfies

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} u\left[v_{t}+a v_{x}\right] d x d t+\int_{-\infty}^{\infty} \phi(x) v(x) d x=0
$$

for all $v \in C^{\infty}\left(\mathbb{R}^{n} \times[0, \infty)\right)$ with compact support. Assume that ϕ is a piecewise C^{1} function. Show that $u(x, t)=\phi(x-a t)$ is a weak solution of $\left({ }^{*}\right)$.
5. Consider the initial-value problem

$$
(*)\left\{\begin{array}{l}
{[g(u)]_{t}+[f(u)]_{x}=0 \quad-\infty<x<\infty, t>0} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

We say u is a weak solution of $(*)$ if u satisfies

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} g(u) v_{t}+f(u) v_{x} d x d t+\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x=0
$$

for all $v \in C^{\infty}(\mathbb{R} \times[0, \infty))$ with compact support. Suppose u is a weak solution of (*) such that u has a jump discontinuity across the curve $x=\xi(t)$, but u is smooth on either side of the curve $x=\xi(t)$. Let $u^{-}(x, t)$ be the value of u to the left of the curve and $u^{+}(x, t)$ be the value of u to the right of the curve. Prove that u must satisfy the condition

$$
\frac{[f(u)]}{[g(u)]}=\xi^{\prime}(t)
$$

across the curve of discontinuity, where

$$
\begin{aligned}
& {[f(u)]=f\left(u^{-}\right)-f\left(u^{+}\right)} \\
& {[g(u)]=g\left(u^{-}\right)-g\left(u^{+}\right) .}
\end{aligned}
$$

