Math 220A - Fall 2002

Homework 2
Due Friday, Oct. 11, 2002
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3. Assume (Z(7, s), 2(7, s), p(7, s)) is the solution of the characteristic ODEs for the fully
nonlinear first-order equation

F(Z,u,Du) =0
U|F=¢

which satisfies the initial condition (Z(7,0), z(7,0), p(7, 0)) = (I'(7), ¢(7), ¥ (7)), where
(T, ¢, ¥) is admissible initial data. Show that

d

—F =0.
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Note: This result proves part of the local existence theorem.

4. Consider the initial-value problem

(){ut—l—aux:O —co<x<o00,t>0

u(z,0) = ¢(z)

We say u is a weak solution of (*) if u satisfies
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for all v € C°(R" x [0,00)) with compact support. Assume that ¢ is a piecewise C!
function. Show that u(z,t) = ¢(x — at) is a weak solution of (*).

5. Consider the initial-value problem

(%) { lg(w)]; + [f(u)], =0 —oo<x<o0,t>0
u(q:, O) = (b(x)
We say u is a weak solution of (*) if u satisfies
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for all v € C*°(R x [0,00)) with compact support. Suppose u is a weak solution of (*)
such that u has a jump discontinuity across the curve z = £(t), but u is smooth on
either side of the curve x = £(t). Let u™(x,t) be the value of u to the left of the curve
and u™(x,t) be the value of u to the right of the curve. Prove that u must satisfy the
condition
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across the curve of discontinuity, where

=¢'(t)



