Math 220A - Fall 2002 Homework 1 Due Friday, Oct. 4, 2002

- 1. Classify the following equations in terms of degree of nonlinearity: linear, semilinear, quasilinear, fully nonlinear.
 - (a) $u_t + u_x + \sin(u) = 0$
 - (b) $u_t + u_x + \sin(x^2) = 0$
 - (c) $u_t + u_x + \sin(u_x) = 0$
 - (d) $u_t + e^u = x^2 u^2$
 - (e) $u_t + e^u u_x = \sin(x^2)$
- 2. Solve

$$\left\{ \begin{array}{l} u_t + x u_x = t^3 \\ u(x,0) = \phi(x). \end{array} \right.$$

3. Solve

$$\begin{cases} u_t + xu_x = u^3\\ u(x,0) = \sin(x). \end{cases}$$

At some time T > 0, the solution u blow up. That is, there exist points x_0 such that $|u(x_0,T)| \to +\infty$. Find the smallest time T, and the points x_0 such that $|u(x_0,t)| \to +\infty$ as $t \to T^-$.

4. (a) Show there are no solutions to

$$\begin{cases} xu_t + u_x = 0\\ u(x,0) = \sin(x). \end{cases}$$

(b) Explain why there are an infinite number of solutions of

$$\begin{cases} xu_t + u_x = 0\\ u(x,0) = \cos(x) \end{cases}$$

5. Solve

$$\begin{cases} u_t + uu_x = 0\\ u(x,0) = \sin(x) \end{cases}$$

Find the time T > 0 such that u(x,t) is smooth for $0 \le t < T$ and $u_x(x,t)$ becomes infinite at time T for some $x = x_0$. Find x_0 .