Math 220A - Fall 2002

Homework 1

Due Friday, Oct. 4, 2002

1. Classify the following equations in terms of degree of nonlinearity: linear, semilinear, quasilinear, fully nonlinear.
(a) $u_{t}+u_{x}+\sin (u)=0$
(b) $u_{t}+u_{x}+\sin \left(x^{2}\right)=0$
(c) $u_{t}+u_{x}+\sin \left(u_{x}\right)=0$
(d) $u_{t}+e^{u}=x^{2} u^{2}$
(e) $u_{t}+e^{u} u_{x}=\sin \left(x^{2}\right)$
2. Solve

$$
\left\{\begin{array}{l}
u_{t}+x u_{x}=t^{3} \\
u(x, 0)=\phi(x) .
\end{array}\right.
$$

3. Solve

$$
\left\{\begin{array}{l}
u_{t}+x u_{x}=u^{3} \\
u(x, 0)=\sin (x) .
\end{array}\right.
$$

At some time $T>0$, the solution u blow up. That is, there exist points x_{0} such that $\left|u\left(x_{0}, T\right)\right| \rightarrow+\infty$. Find the smallest time T, and the points x_{0} such that $\left|u\left(x_{0}, t\right)\right| \rightarrow$ $+\infty$ as $t \rightarrow T^{-}$.
4. (a) Show there are no solutions to

$$
\left\{\begin{array}{l}
x u_{t}+u_{x}=0 \\
u(x, 0)=\sin (x) .
\end{array}\right.
$$

(b) Explain why there are an infinite number of solutions of

$$
\left\{\begin{array}{l}
x u_{t}+u_{x}=0 \\
u(x, 0)=\cos (x)
\end{array}\right.
$$

5. Solve

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0 \\
u(x, 0)=\sin (x) .
\end{array}\right.
$$

Find the time $T>0$ such that $u(x, t)$ is smooth for $0 \leq t<T$ and $u_{x}(x, t)$ becomes infinite at time T for some $x=x_{0}$. Find x_{0}.

