
6 Wave Equation on an Interval: Separation of Vari-

ables

6.1 Dirichlet Boundary Conditions

Ref: Strauss, Chapter 4
We now use the separation of variables technique to study the wave equation on a finite

interval. As mentioned above, this technique is much more versatile. In particular, it can
be used to study the wave equation in higher dimensions. We will discuss this later, but for
now will continue to consider the one-dimensional case. We start by considering the wave
equation on an interval with Dirichlet boundary conditions,





utt − c2uxx = 0 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u(0, t) = 0 = u(l, t).

(6.1)

Our plan is to look for a solution of the form u(x, t) = X(x)T (t). Suppose we can find
a solution of this form. Plugging u into the wave equation above, we see that the functions
X, T must satisfy

X(x)T ′′(t) = c2X ′′(x)T (t). (6.2)

Dividing (6.2) by −c2XT , we see that

− T ′′

c2T
= −X ′′

X
= λ

for some constant λ, which implies

−X ′′(x) = λX(x)

−T ′′(t) = λc2T (t).

Our boundary conditions u(0, t) = 0 = u(l, t) imply X(0)T (t) = 0 = X(l)T (t) for all t.
Combining this boundary condition with the ODE for X, we see that X must satisfy

{
−X ′′(x) = λX(x)

X(0) = 0 = X(l).
(6.3)

If there exists a constant λ satisfying (6.3) for some function X, which is not identically zero,
we say λ is an eigenvalue of −∂2

x on [0, l] subject to Dirichlet boundary conditions. The
corresponding function X is called an eigenfunction of −∂2

x on [0, l] subject to Dirichlet
boundary conditions.

Claim 1. The eigenvalues of (6.3) are λn = (nπ/l)2 with corresponding eigenfunctions
Xn(x) = sin(nπx/l).
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Proof. We need to look for all the eigenvalues of (6.3). First, we look for any positive
eigenvalues. Suppose λ is a positive eigenvalue. Then λ = β2 > 0. Therefore, we need to
find solutions of {

X ′′(x) + β2X(x) = 0

X(0) = 0 = X(l).

Solutions of this ODE are given by

X(x) = C cos(βx) + D sin(βx)

for arbitrary constants C, D. The boundary condition

X(0) = 0 =⇒ C = 0.

The boundary condition

X(l) = 0 =⇒ D sin(βl) = 0 =⇒ β =
nπ

l

for some integer n. Therefore, we have an infinite number of eigenvalues λn = β2
n = (nπ/l)2

with corresponding eigenfunctions

Xn(x) = Dn sin
(nπ

l
x
)

where Dn is arbitrary.
We have proven that λn = (nπ/l)2 are eigenvalues for the eigenvalue problem (6.3). We

need to check that there are no other eigenvalues.
We check if λ = 0 is an eigenvalue. If λ = 0 is an eigenvalue, our eigenvalue problem

becomes {
X ′′(x) = 0

X(0) = 0 = X(l).
(6.4)

The solutions of this ODE are
X(x) = Cx + D

for C, D arbitrary. The boundary condition

X(0) = 0 =⇒ D = 0.

The boundary condition
X(l) = 0 =⇒ C = 0.

Therefore, the only function X which satisfies (6.4) is X(x) = 0. By definition, the zero
function is not an eigenfunction. Therefore, λ = 0 is not an eigenvalue of (6.3).

Next, we check if there are any negative eigenvalues. Suppose λ = −γ2 is an eigenvalue
of (6.3). If we have any negative eigenvalues, our eigenvalue problem becomes

{
X ′′(x)− γ2X(x) = 0

X(0) = 0 = X(l).
(6.5)
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The solutions of this ODE are given by

X(x) = C cosh(γx) + D sinh(γx)

for C, D arbitrary. Our boundary condition

X(0) = 0 =⇒ C = 0.

Our boundary condition
X(l) = 0 =⇒ D = 0.

Therefore, the only solution of (6.5) is X = 0. Again, by definition, the zero function is not
an eigenfunction. Therefore, there are no negative eigenvalues of (6.3).

Consequently, we have found an infinite sequence of eigenvalues and eigenfunctions for
our eigenvalue problem (6.3). For each of these pairs {λn, Xn}, we look for a function Tn

satisfying
−T ′′

n (t) = λnc2Tn(t). (6.6)

Then letting un(x, t) = Xn(x)Tn(t), we will have found a solution of the wave equation
on [0, l] which satisfies our boundary conditions. Of course, we have not yet looked into
satisfying our initial conditions. We will consider that shortly. First, we see that for each n
the solution of (6.6) is given by

Tn(t) = An cos
(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)
.

Therefore, for each n,

un(x, t) = Tn(t)Xn(x)

=
[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

is a solution of the wave equation on the interval [0, l] which satisfies un(0, t) = 0 = un(l, t).
More generally, using the fact that the wave equation is linear, we see that any finite linear
combination of the functions un will also give us a solution of the wave equation on [0, l]
satisfying our Dirichlet boundary conditions. That is, any function of the form

u(x, t) =
N∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

solves the wave equation on [0, l] and satifies u(0, t) = 0 = u(l, t).
Now we also want the solution to satisfy our initial conditions. Our hope is that we

can choose our coefficients An, Bn appropriately so that u(x, 0) = φ(x) and ut(x, 0) = ψ(x).
That is, we would like to choose An, Bn such that

u(x, 0) =
N∑

n=1

An sin
(nπ

l
x
)

= φ(x)

ut(x, 0) =
N∑

n=0

Bn
nπc

l
sin

(nπ

l
x
)

= ψ(x).

(6.7)
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Our desire to express our initial data as a linear combination of trigonometric functions leads
us to a couple of quesitons.

• For which functions φ, ψ can we find constants An, Bn such that we can write φ and ψ
in the forms shown in (6.7)?

• How do we find the coefficients An, Bn?

In answer to our first question, for general functions φ, ψ we cannot express them as
finite linear combinations of trigonometric functions. However, if we allow for infinite series,
then for “nice” functions, we can express them as combinations of trigonometric functions.
We will be more specific about what we mean by “nice” functions later. We will answer
the second question, regarding finding our coefficients, shortly. First, however, we make a
remark.

Remark. Stated above, we claim that we can represent ”nice” functions φ and ψ in terms
of infinite series expansions involving our eigenfunctions sin

(
nπ
l
x
)
. By this, we mean there

exist constants An, Bn such that

φ(x) ∼
∞∑

n=1

An sin
(nπ

l
x
)

ψ(x) ∼
∞∑

n=1

Bn
nπc

l
sin

(nπ

l
x
)

,

(6.8)

where ∼ means that the infinite series converge to φ and ψ, respectively, in some appropriate
sense. We will discuss convergence issues shortly. Assuming for now that we can find
sequences {An}, {Bn} such that φ, ψ satisfy (6.8), then defining

u(x, t) =
∞∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

,

we claim we will have found a solution of (6.1). We should note that if u(x, t) was a finite
sum, then it would satisfy the wave equation, as described earlier. To say that the infinite
series satisfies the wave equation is a separate question. This is a technical point which we
will return to later. ¦

To recap, so far we have shown that any function of the form

un(x, t) =
[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

is a solution of the wave equation on [0, l] which satisfies Dirichlet boundary conditions. In
addition, any finite linear combination of functions of this form will also satisfy the wave
equation on the interval [0, l] with zero boundary conditions. We claim that

u(x, t) =
∞∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)
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will also solve the wave equation on [0, l]. Before discussing this issue, we look for appropriate
coefficients An, Bn which will satisfy our initial conditions.

As stated above, we would like to find coefficients An such that

φ(x) =
∞∑

n=1

An sin
(nπ

l
x
)

. (6.9)

Ignoring the convergence issues for a moment, if φ can be expressed in terms of this infinite
sum, what must the coefficients An be? For a fixed integer m, multiply both sides of (6.9)
by sin

(
mπ
l

x
)

and integrate from x = 0 to x = l. This leads to

∫ l

0

sin
(mπ

l
x
)

φ(x) dx =

∫ l

0

sin
(mπ

l
x
) ∞∑

n=1

An sin
(nπ

l
x
)

dx. (6.10)

Now we use the following property of the sine functions. In particular, we use the fact that

∫ l

0

sin
(mπ

l
x
)

sin
(nπ

l
x
)

dx =





l

2
m = n

0 m 6= n.
(6.11)

Proof of (6.11). Recalling the trigonometric identities

cos(A±B) = cos(A) cos(B)∓ sin(A) sin(B),

we have

sin(A) sin(B) =
1

2
cos(A−B)− 1

2
cos(A + B).

Therefore,

∫ l

0

sin
(mπ

l
x
)

sin
(nπ

l
x
)

dx =
1

2

∫ l

0

cos

(
(m− n)π

l
x

)
dx− 1

2

∫ l

0

cos

(
(m + n)π

l
x

)
dx.

First,

∫ l

0

cos

(
(m + n)π

l
x

)
dx =

l

(m + n)π
sin

(
(m + n)π

l
x

)∣∣∣∣
x=l

x=0

=
l

(m + n)π
[sin((m + n)π)− sin(0)] = 0.

Similarly, for m 6= n,

∫ l

0

cos

(
(m− n)π

l
x

)
dx =

l

(m− n)π
sin

(
(m− n)π

l
x

)∣∣∣∣
x=l

x=0

=
l

(m− n)π
[sin((m− n)π)− sin(0)] = 0.
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But, for m = n,

∫ l

0

cos

(
(m− n)π

l
x

)
dx =

∫ l

0

cos(0) dx =

∫ l

0

dx = l.

Therefore, for m 6= n, we have

∫ l

0

sin
(mπ

l
x
)

sin
(nπ

l
x
)

dx = 0,

while for m = n, we have

∫ l

0

sin
(mπ

l
x
)

sin
(nπ

l
x
)

dx =
l

2
,

as claimed. ¤
Now using (6.11), (6.10) becomes

∫ l

0

sin
(mπ

l
x
)

φ(x) dx = Am
l

2
.

Therefore, our coefficients Am are given by

Am =
2

l

∫ l

0

sin
(mπ

l
x
)

φ(x) dx.

With these ideas in mind, for a given function φ, we define its Fourier sine series on
the interval [0, l] as

∞∑
n=1

An sin
(nπ

l
x
)

(6.12)

where

An =
2

l

∫ l

0

sin
(nπ

l
x
)

φ(x) dx. (6.13)

Remark. We should mention that all our estimates above have been rather formal. We
have not shown yet that any function φ can be represented by its Fourier series. Rather, we
have shown that if a function φ can be represented by the infinite series

∞∑
n=1

An sin
(nπ

l
x
)

,

then its coefficients An should be given by

An =
2

l

∫ l

0

sin
(nπ

l
x
)

φ(x) dx.
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The work done above has led us to the definition of the Fourier sine series associated with a
given function φ. It still remains to determine when a Fourier sine series for a given function
φ will actually converge to φ. ¦

We now have enough information to put together a solution of the initial-value problem for
the one-dimensional wave equation with Dirichlet boundary conditions (6.1). Combining the
infinite series expansions of our initial data φ and ψ (6.8) with (6.13), we define coefficients

An ≡ 2

l

∫ l

0

sin
(nπ

l
x
)

φ(x) dx

nπc

l
Bn ≡ 2

l

∫ l

0

sin
(nπ

l
x
)

ψ(x) dx.

(6.14)

and then our solution will be given by

u(x, t) =
∞∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

. (6.15)

6.2 Orthogonality and Symmetric Boundary Conditions

In using the method of separation of variables in the previous section, one of the keys in
finding the coefficients An, Bn (6.14) in the infinite series expansion (6.15) was using the fact
that the eigenfunctions sin

(
nπ
l
x
)

satisfy

∫ l

0

sin
(nπ

l
x
)

sin
(mπ

l
x
)

dx = 0

for m 6= n. In this section, we consider the wave equation on [0, l] with different boundary
conditions and discuss when our eigenfunctions will satisfy the same type of condition, thus
allowing us to determine the coefficients in the infinite series expansion of our solution.

First, we recall some facts from linear algebra. Let ~v = [v1, . . . , vn]T , ~w = [w1, . . . , wn]T

be two vectors in Rn. The dot product of ~v and ~w is defined as

~v · ~w = v1w1 + . . . + vnwn.

The norm of ~v is given by

‖~v‖ =
√

v2
1 + . . . + v2

n = (~v · ~v)1/2.

We say ~v and ~w are orthogonal if their dot product is zero; that is,

~v · ~w = 0.

We now extend these ideas to functions. Let f , g be two real-valued functions defined
on the interval [a, b] ⊂ R. We define the L2 inner product of f and g on [a, b] as

〈f, g〉 =

∫ b

a

f(x)g(x) dx.
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We define the L2 norm of f on the interval [a, b] as

‖f‖L2([a,b]) =

(∫ b

a

|f(x)|2 dx

)1/2

= 〈f, f〉1/2 ,

and define the space of L2 functions on [a, b] as

L2([a, b]) = {f : ‖f‖L2([a,b]) < +∞}.

We say f and g are orthogonal on [a, b] if their L2 inner product on [a, b] is zero; that is,

〈f, g〉 =

∫ b

a

f(x)g(x) dx = 0.

With these definitions, we note that the functions {sin (
nπ
l
x
)} are mutually orthogonal. We

were able to use this fact to find the coefficients in the infinite series expansion of our solution
u of the wave equation on [0, l] with Dirichlet boundary conditions. If our eigenfunctions
were not orthogonal, we would have had no way of solving for our coefficients. Suppose we
consider the wave equation on [0, l] with a different set of boundary conditions. Will our
eigenfunctions be orthogonal?

For example, consider the initial-value problem for the wave equation on [0, l] with more
general boundary conditions,





utt − c2uxx = 0 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u satisfies certain boundary

conditions at x = 0, x = l for all t.

Using the method of separation of variables, we are led to the following eigenvalue problem,

{
−X ′′ = λX 0 < x < l

X satisfies certain boundary conditions at x = 0, x = l.
(6.16)

Let {Xn} be a sequence of eigenfunctions for this eigenvalue problem. Under what conditions
will {Xn} be a sequence of mutually orthogonal eigenfunctions? That is, when can we
guarantee that

〈Xn, Xm〉 =

∫ l

0

XnXm dx = 0

for m 6= n?
In order to answer this question, we recall some facts from linear algebra. Let A be an

n× n matrix. One condition which guarantees the orthogonality of the eigenvectors of A is
symmetry of A; that is, A = AT . (Note: A matrix A being symmetric is a sufficient but
not necessary condition for its eigenvectors being orthogonal.) Now, we don’t have a notion
of symmetry for operators yet, but let’s try to use the properties of symmetric matrices to
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extend the idea to operators. We note that if A is a symmetric matrix, then for all vectors
~u, ~v in Rn,

A~u · ~v = (A~u)T~v = ~uT AT~v = ~uT A~v = ~u · A~v.

The converse of this statement is also true. That is, if

A~u · ~v = ~u · A~v

for all ~u,~v in Rn, then A is symmetric. It is left to the reader to verify this fact. Consequently,
we conclude that if

A~u · ~v = ~u · A~v

for all ~u, ~v in Rn, then the eigenvectors of A are orthogonal.
We now plan to extend the idea of symmetry of matrices to operators to find sufficient

conditions for the orthogonality of eigenfunctions. Suppose we have an operator L such that

〈L(u), v〉 = 〈u,L(v)〉

for all u, v in an appropriate function space. It turns out that the eigenfunctions associated
with the eigenvalue problem

{
L(X) = λX ~x ∈ Ω ⊂ Rn

X satisfies certain boundary conditions on ∂Ω
(6.17)

are orthogonal. We state this more precisely in the following lemma.

Lemma 2. Let Xn, Xm be eigenfunctions of (6.17) with eigenvalues λn, λm respectively
such that λn 6= λm. If

〈L(Xn), Xm〉 = 〈Xn,L(Xm)〉 , (6.18)

then Xn and Xm are orthogonal.

Proof. Combining (6.18) with the fact that Xn, Xm are eigenfunctions of (6.17) with eigen-
values λn, λm respectively, we have

λn 〈Xn, Xm〉 = 〈L(Xn), Xm〉
= 〈Xn,L(Xm)〉
= λm 〈Xn, Xm〉 .

Therefore,
(λn − λm) 〈Xn, Xm〉 = 0.

Now using the assumption that λn 6= λm, we conclude that

〈Xn, Xm〉 = 0,

as claimed.

9



Now we return to our eigenvalue problem (6.16). We would like to find sufficient condi-
tions under which the boundary conditions lead to orthogonal eigenfunctions. We make use
of the above lemma. In particular, for (6.16) our operator L = −∂2

x. By the above lemma, we
know that if Xn and Xm are eigenfunctions of (6.16) which correspond to distinct eigenvalues
λn, λm and

〈−X ′′
n, Xm〉 = 〈Xn,−X ′′

m〉 , (6.19)

then Xn and Xm are orthogonal. Therefore, if we can find a sufficient condition under which
(6.19) holds, then we can prove orthogonality of eigenfunctions corresponding to distinct
eigenvalues. We state such a condition in the following lemma.

Lemma 3. If
[f(x)g′(x)− f ′(x)g(x)]|x=l

x=0 = 0 (6.20)

for all functions f , g satisfying the boundary conditions in (6.16), then

〈−X ′′
n, Xm〉 = 〈Xn,−X ′′

m〉

for all eigenfunctions Xn, Xm of (6.16).

Proof. Integrating by parts, we see that

〈X ′′
n, Xm〉 =

∫ l

0

X ′′
nXm dx

= X ′
nXm|x=l

x=0 −
∫ l

0

X ′
nX ′

m dx

= X ′
nXm|x=l

x=0 − XnX ′
m|x=l

x=0 +

∫ l

0

XnX
′′
m dx

= [X ′
nXm −XnX

′
m]|x=l

x=0 + 〈Xn, X
′′
m〉 .

Therefore, if (6.20) holds for all functions f , g which satisfy the boundary conditions in
(6.16), then necessarily

[X ′
nXm −XnX

′
m]|x=l

x=0 = 0,

and the lemma follows.

Putting together the two lemmas above, we conclude that condition (6.20) is sufficient
to guarantee orthogonality of eigenfunctions corresponding to distinct eigenvalues. Conse-
quently, we define this condition as a symmetry condition associated with the operator −∂2

x.
In particular, for the eigenvalue problem (6.16), we say the boundary conditions are
symmetric if

[f(x)g′(x)− f ′(x)g(x)]|x=l
x=0 = 0

for all functions f and g satisfying the given boundary conditions.

Corollary 4. Consider the eigenvalue problem (6.16). If the boundary conditions are sym-
metric, then eigenfunctions corresponding to distinct eigenvalues are orthogonal.

10



Remark. The above corollary states that eigenfunctions corresponding to distinct eigen-
values are orthogonal. In fact, eigenfunctions associated with the same eigenvalue can be
chosen to be orthogonal by using the Gram-Schmidt orthogonalization process. (See Strauss,
Sec. 5.3, Exercise 10) ¦

Now, let’s return to solving the wave equation on an interval. Consider the initial-value
problem 




utt − c2uxx = 0 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u satisfies symmetric B.C.’s

(6.21)

Below we will show formally how to construct a solution of this problem. We will indicate
how symmetric boundary conditions allow us to use separation of variables to construct a
solution. Specifically, we will find a formula for the coefficients in the infinite series expansion
in terms of the eigenfunctions and the initial data.

Using separation of variables, we are led to the eigenvalue problem,
{
−X ′′ = λX 0 < x < l

X satisfies symmetric B.C.s.
(6.22)

Let {(λn, Xn)} be all the eigenvalues and corresponding eigenfunctions for this eigenvalue
problem. For each eigenvalue, we solve the following equation for Tn,

T ′′
n (t) + c2λnTn(t) = 0.

The solutions of this equation are given by

Tn(t) =





An cos(
√

λnct) + Bn sin(
√

λnct) if λn > 0
An + Bnt if λn = 0
An cosh(

√−λnct) + Bn sinh(
√−λnct) if λn < 0,

(6.23)

where An and Bn are arbitrary. Putting each solution Tn of this equation together with the
corresponding eigenfunction Xn, we arrive at a solution of the wave equation

un(x, t) = Xn(x)Tn(t)

which satisfies the boundary conditions. Due to the linearity of the wave equation, we
know any finite sum of solutions un is also a solution. We now look to find an appropriate
combination of these solutions un so that our initial conditions will be satisfied. That is, we
would like to choose An, Bn appropriately for each Tn such that by defining

u(x, t) =
∑

n

Xn(x)Tn(t) (6.24)

with that choice An, Bn, our initial conditions are satisfied. In particular, we want to find
coefficients An, Bn such that

u(x, 0) =
∑

n

Xn(x)Tn(0) =
∑

n

AnXn(x) = φ(x)

ut(x, 0) =
∑

n

Xn(x)T ′
n(0) =

∑
n

CnXn(x) = ψ(x),
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where

Cn ≡




cBn

√
λn λn > 0

Bn λn = 0
cBn

√−λn λn < 0.

If we can find coefficents An, Cn such that we can write our initial data φ, ψ as

φ(x) =
∑

n

AnXn(x)

ψ(x) =
∑

n

CnXn(x),
(6.25)

we claim that we have found a solution of (6.21) given by

u(x, t) =
∑

n

Xn(x)Tn(t)

where Tn is defined in (6.23) with An defined by (6.25) and

Bn ≡




Cn/c
√

λn λn > 0
Cn λn = 0
Cn/c

√−λn λn < 0,
(6.26)

for Cn defined in (6.25).
Now whether we can represent our initial data in terms of our eigenfunctions is a key

issue we need to consider if we hope to use this method. Luckily, it turns out that for nice
functions φ, ψ and any symmetric boundary conditions, we can represent φ, ψ in terms of
our eigenfunctions. In fact, as we will show later, for any symmetric boundary conditions,
there is an infinite sequence of eigenvalues {λn} for (6.22) such that λn → +∞ as n →
+∞. Corresponding with these eigenvalues, we will have an infinite sequence of orthogonal
eigenfunctions. It turns out that any L2 function can be represented by these eigenfunctions.
In addition, this infinite sequence of eigenfunctions allows us to represent our solution as

u(x, t) =
∑

n

Xn(x)Tn(t)

for appropriately chosen constants An, Bn in the definition of Tn. We should mention that
in general this solution will be an infinite series solution. It remains to prove that an infinite
sum of solutions will still give us a solution of (6.21). We will return to these issues later.

First, however, let us try to find formulas for our coefficients An, Cn in (6.25). Assuming
we can represent our initial data in terms of our eigenfunctions as in (6.25), we can use
Corollary 4 to determine what our coefficients should be. Specifically,

φ(x) =
∞∑

n=1

AnXn(x)

=⇒
〈

Xm,

∞∑
n=1

AnXn

〉
= 〈Xm, φ〉 .
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Now by Corollary (6.25), we know that symmetric boundary conditions imply eigenfunctions
corresponding to distinct eigenvalues are orthogonal, and, consequently,

〈Xm, AmXm〉 = 〈Xm, φ〉 .

Therefore, the coefficients Am for φ in the infinite series expansion

φ(x) =
∑

n

AnXn(x)

must be given by

Am =
〈Xm, φ〉
〈Xm, Xm〉 . (6.27)

Similarly, the coefficients Cm in the infinite series expansion

ψ(x) =
∑

n

CnXn(x)

must be given by

Cm =
〈Xm, ψ〉
〈Xm, Xm〉 . (6.28)

Therefore, we claim that our solution of (6.21) is given by

u(x, t) =
∑

n

Xn(x)Tn(t)

where Tn is defined in (6.23) with An defined by (6.27) and Bn defined by (6.26) for Cn

defined by (6.28). Let’s look at an example.

Example 5. Consider the initial-value problem for the wave equation on an interval with
Neumann boundary conditions,





utt − c2uxx = 0 0 < x < l
u(x, 0) = φ(x), 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
ux(0, t) = 0 = ux(l, t).

(6.29)

Using the separation of variables technique, we are led to the eigenvalue problem

{
−X ′′ = λX

X ′(0) = 0 = X ′(l).
(6.30)

We note that the Neumann boundary conditions are symmetric, because for all functions
f, g such that f ′(0) = 0 = g′(0) and f ′(l) = 0 = g′(l), we have

[f(x)g′(x)− f ′(x)g(x)]|x=l
x=0 = 0.

13



Therefore, we will be able to use the orthogonality of the eigenfunctions to determine the
coefficients of our solution in the infinite series expansion.

First, we look for all our eigenvalues and eigenfunctions of (6.30). We start by looking
for positive eigenvalues λ = β2 > 0. In this case, our eigenvalue problem becomes

{
X ′′ + β2X = 0

X ′(0) = 0 = X ′(l).

The solutions of our ODE are given by

X(x) = C cos(βx) + D sin(βx).

The boundary condition
X ′(0) = 0 =⇒ D = 0.

The boundary condition

X ′(l) = 0 =⇒ −Cβ sin(βl) = 0 =⇒ β =
nπ

l
.

Therefore, we have an infinite sequence of positive eigenvalues given by λn = β2
n = (nπ/l)2

with corresponding eigenfunctions Xn(x) = Cn cos
(

nπ
l
x
)
.

Next, we check if λ = 0 is an eigenvalue. If λ = 0, our eigenvalue problem (6.30) becomes

{
X ′′ = 0

X ′(0) = 0 = X ′(l).

The solutions of this ODE are given by

X(x) = Cx + D,

where C,D are arbitrary. The boundary condition

X ′(0) = 0 =⇒ C = 0.

The boundary condition
X ′(l) = 0

is automatically satisfied as long as C = 0 (i.e. - the first boundary condition is satisfied).
Therefore, X(x) = D is an eigenfunction with eigenvalue λ = 0.

Last, we look for negative eigenvalues. That is, we look for an eigenvalue λ = −γ2. In
this case, our eigenvalue problem (6.30) becomes

{
X ′′ − γ2X = 0

X ′(0) = 0 = X ′(l).

The solutions of the ODE are given by

X(x) = C cosh(γx) + D sinh(γx).

14



The boundary condition
X ′(0) = 0 =⇒ D = 0.

The boundary condition

X ′(l) = 0 =⇒ Cγ sinh(γl) = 0 =⇒ C = 0.

Therefore, the only function X which satisfies our eigenvalue problem for λ = −γ2 < 0 is the
zero function, which by definition is not an eigenfunction. Therefore, we have no negative
eigenvalues.

Consequently, the eigenvalues and eigenfunctions for (6.30) are given by

λn =
(

nπ
l

)2
, Xn(x) = cos

(
nπ
l
x
)
, n = 1, 2, . . .

λ0 = 0, X0(x) = 1.

For each n = 0, 1, 2, . . ., we need to look for a solution of our equation for Tn. In particular,
we need to solve

T ′′
n (t) + c2λnTn(t) = 0.

As described earlier, the solutions of this equation are given by

Tn(t) = An cos
(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)
n = 1, 2, . . .

T0(t) = A0 + B0t.

for An, Bn arbitrary.
Putting these functions Xn, Tn together, we propose that our solution is given by

u(x, t) = A0 + B0t +
∞∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
cos

(nπ

l
x
)

for appropriately chosen constants An, Bn. Using our initial conditions, we want to choose
An, Bn such that

u(x, 0) = A0 +
∞∑

n=1

An cos
(nπ

l
x
)

= φ(x)

ut(x, 0) = B0 +
∞∑

n=1

nπc

l
Bn cos

(nπ

l
x
)

= ψ(x).

(6.31)

That is, we want constants An, Bn such that

φ(x) =
∞∑

n=0

AnXn(x)

ψ(x) = B0X0(x) +
∞∑

n=1

nπc

l
BnXn(x).
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Note: For ψ, we look for constants Cn such that

ψ(x) =
∞∑

n=0

CnXn(x)

and then define Bn such that

Bn =

{
C0 n = 0

l
nπc

Cn n = 1, 2, . . .

Using the fact that the Neumann boundary conditions are symmetric, we know that
eigenfunctions corresponding to distinct eigenvalues must be orthogonal. Consequently, we
can use the formulas (6.27), (6.28) derived earlier for An, Cn. In particular,

An ≡ 〈Xn, φ〉
〈Xn, Xn〉

Cn ≡ 〈Xn, ψ〉
〈Xn, Xn〉

Now

〈X0, φ〉 =

∫ l

0

X0φ dx =

∫ l

0

φ(x) dx

〈Xn, φ〉 =

∫ l

0

Xnφ dx =

∫ l

0

cos
(nπ

l
x
)

φ(x) dx n = 1, 2, . . .

and

〈X0, X0〉 =

∫ l

0

dx = l

〈Xn, Xn〉 =

∫ l

0

cos2
(nπ

l
x
)

dx =
l

2
n = 1, 2, . . .

Therefore, our solution of (6.29) is given by

u(x, t) = A0 + B0t +
∞∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
cos

(nπ

l
x
)

where

A0 =
〈X0, φ〉
〈X0, X0〉 =

1

l

∫ l

0

φ(x) dx

An =
〈Xn, φ〉
〈Xn, Xn〉 =

2

l

∫ l

0

cos
(nπ

l
x
)

φ(x) dx n = 1, 2, . . .

and

B0 = C0 =
〈X0, ψ〉
〈X0, X0〉 =

1

l

∫ l

0

ψ(x) dx

nπc

l
Bn = Cn =

〈X0, ψ〉
〈Xn, Xn〉 =

2

l

∫ l

0

cos
(nπ

l
x
)

ψ(x) dx n = 1, 2, . . .

Remarks.
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• Using the fact that our boundary conditions are symmetric, we know from Corollary 4
that eigenfunctions corresponding to distinct eigenvalues are orthogonal. As a result,
we gain for free the orthogonality property of cosine functions:

∫ l

0

cos
(mπ

l
x
)

cos
(nπ

l
x
)

= 0 for m 6= n.

• The series

A0 +
∞∑

n=1

An cos
(nπ

l
x
)

where

A0 ≡ 1

l

∫ l

0

φ(x) dx

An ≡ 2

l

∫ l

0

cos
(nπ

l
x
)

φ(x) dx n = 1, 2, . . .

is known as the Fourier cosine series of φ on the interval [0, l].

¦
We close this section by giving some examples of symmetric boundary conditions,

Example 6. The following boundary conditions are symmetric for the eigenvalue problem
(6.22).

• Dirichlet: X(0) = 0 = X(l)

• Neumann: X ′(0) = 0 = X ′(l)

• Periodic: X(0) = X(l), X ′(0) = X ′(l)

• Robin: X ′(0) = aX(0), X ′(l) = bX(l)

¦

6.3 Fourier Series

In the previous section we showed that solving an initial-value problem for the wave equation
on an interval can essentially be reduced to studying an associated eigenvalue problem. That
is, using separation of variables, the IVP





utt − c2uxx = 0 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u satisfies certain B.C.s

(6.32)
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can be reduced to studying the eigenvalue problem
{
−X ′′ = λX 0 < x < l

X satisfies certain B.C.s

One of the key ingredients in using the solutions of the eigenvalue problem to solve the
initial-value problem (6.32) was being able to represent our initial data in terms of our
eigenfunctions. That is, to be able to find coefficients An, Cn such that

φ(x) =
∑

n

AnXn(x)

ψ(x) =
∑

n

CnXn(x).

In this section, we discuss this issue in detail, showing when such a representation makes
sense.

First, we start with some definitions. For a function φ defined on [0, l] we define its
Fourier sine series as

φ(x) ∼
∞∑

n=1

An sin
(nπ

l
x
)

where

An ≡ 〈sin(nπx/l), φ〉
〈sin(nπx/l), sin(nπx/l)〉 .

Note: As we have not discussed any convergence issues yet, the notation ”∼” should just be
thought of as meaning φ is associated with the Fourier series shown. We saw this series earlier
in the case of Dirichlet boundary conditions. In the case of Neumann boundary conditions,
we were led to the Fourier cosine series of φ on [0, l],

φ(x) ∼
∞∑

n=0

An cos
(nπ

l
x
)

where

An ≡ 〈cos(nπx/l), φ〉
〈cos(nπx/l), cos(nπx/l)〉

The other classical Fourier series is known as the full Fourier series. The full Fourier
series for φ defined on [−l, l] is given by

φ(x) ∼ A0 +
∞∑

n=1

[
An cos

(nπ

l
x
)

+ Bn sin
(nπ

l
x
)]

,

where

An ≡ 〈cos(nπx/l), φ〉
〈cos(nπx/l), cos(nπx/l)〉 n = 0, 1, 2, . . .

Bn ≡ 〈sin(nπx/l), φ〉
〈sin(nπx/l), sin(nπx/l)〉 n = 1, 2, . . . .

(6.33)
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Note: The inner products for the full Fourier series are taken on the interval [−l, l]. The
full Fourier series arises in the case of periodic boundary conditions.

Relationship between Fourier sine, Fourier cosine and full Fourier series.
Let φ be an odd function defined on [−l, l]. Then its full Fourier series is an odd function

because the coefficients An defined in (6.33) are zero. Therefore, for φ odd, its full Fourier
series is given by

φ(x) ∼
∞∑

n=1

Bn sin
(nπ

l
x
)

,

where Bn is defined in (6.33). In particular, for an odd function φ defined on [−l, l], the full
Fourier series of φ is the Fourier sine series of the restriction of φ to [0, l].

Equivalently, for a function φ defined on [0, l] the Fourier sine series of φ is the full Fourier
series of the odd extension of φ to [−l, l].

Similarly, for an even function defined on [−l, l], the full Fourier series is an even function
because the coefficients Bn defined in (6.33) are zero. Therefore, for φ even, its full Fourier
series is

φ(x) ∼ A0 +
∞∑

n=1

An cos
(nπ

l
x
)

,

where An is defined in (6.33). For an even function φ defined on [−l, l], the full Fourier series
of φ is the Fourier cosine series of the restriction of φ to [0, l].

Equivalently, for a function φ defined on [0, l], the Fourier cosine series of φ is the full
Fourier series of the even extension of φ to [−l, l].

We will use these relationships below when we discuss convergence issues.

General Fourier Series.
More generally than the classical Fourier series discusses above, we introduce the notion of

a generalized Fourier series. Let {Xn} be a sequence of mutually orthogonal eigenfunctions
in L2([a, b]). Let φ be any function defined on [a, b]. Let

An ≡ 〈Xn, φ〉
〈Xn, Xn〉 .

Then the An are the generalized Fourier coefficients for

∞∑
n=1

AnXn(x),

a generalized Fourier series of φ on [a, b].
We now state and prove some results regarding the convergence of Fourier series. First,

we define some different types of convergence.

Types of Convergence.
There are several types of convergence one can consider. We define three different types.

Let {sn} be a sequence of functions defined on the interval [a, b].

• We say sn converges to f pointwise on (a, b) if

|sn(x)− f(x)| → 0 as n → +∞
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for each x ∈ (a, b).

• We say sn converges to f uniformly on [a, b] if

max
a≤x≤b

|sn(x)− f(x)| → 0 as n → +∞.

• We say sn converges to f in the L2-sense on (a, b) if

‖sn − f‖L2 → 0 as n → +∞.

Some Convergence Results for Fourier Series.
We will now state some convergence results for Fourier series with respect to the different

types of convergence. First, we need to give some definitions. We say

f(x+) = lim
x→x+

f(x)

f(x−) = lim
x→x−

f(x).

Theorem 7. (Pointwise Convergence of Classical Fourier Series) (Ref: Strauss, Sec. 5.4)
Let f , f ′ be piecewise continuous functions on [−l, l]. Then the full Fourier series converges
to

1

2
[fext(x

+) + fext(x
−)]

at every point x ∈ R, where fext is the 2l-periodic extension of f .

Remark. Due to the relationship between the Fourier sine, Fourier cosine and full Fourier
series, this theorem implies the convergence of the Fourier sine and Fourier cosine series as
well. For a function φ defined on [0, l], the Fourier sine series of φ converges if and only if
the full Fourier series of the odd extension of φ to [−l, l] converges.

The following two theorems allow for generalized Fourier series. Let f be any function
defined on [a, b]. Let {Xn} be a sequence of mutually orthogonal eigenfunctions for the
eigenvalue problem {

−X ′′ = λX a < x < b

X satisfies symmetric B.C.s

Let
∑

n AnXn(x) be the associated generalized Fourier series of f .

Theorem 8. (Uniform Convergence) (Ref: Strauss, Sec. 5.4) The Fourier series
∑

n AnXn(x)
converges to f uniformly on [a, b] provided that

(1) f , f ′, and f ′′ exist and are continuous for x ∈ [a, b].

(2) f satisfies the given boundary conditions.

Remark. In the case of any of the classical Fourier series, the assumption that f ′′ exists
may be dropped.
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Theorem 9. (L2 convergence) (Ref: Strauss, Sec. 5.4) The Fourier series
∑

n AnXn(x)
converges to f in the L2 sense in (a, b) as long as f ∈ L2([a, b]).

Proofs of Convergence Results.
In this section, we prove Theorem 7. In order to do so, we need to prove some preliminary

results.

Theorem 10. (Ref: Strauss, Sec. 5.4) Let {Xn} be a sequence of mutually orthogonal
functions in L2. Let f ∈ L2. Fix a positive integer N . Then the expression

EN =

∥∥∥∥∥f −
N∑

n=1

anXn

∥∥∥∥∥

2

L2

is minimized by choosing

an =
〈f,Xn〉
〈Xn, Xn〉 .

Remark. This means that in the series
∑

n anXn, the coefficients an which provide the best
least-squares approximation to f are the Fourier coefficients.

Proof. Using the properties of inner product and the orthogonality of the functions Xn, we
have

EN =

∥∥∥∥∥f −
N∑

n=1

anXn

∥∥∥∥∥

2

L2

=

〈
f −

N∑
n=1

anXn, f −
N∑

n=1

anXn

〉

= 〈f, f〉 − 2

〈
f,

N∑
n=1

anXn

〉
+

〈
N∑

n=1

anXn,

N∑
n=1

anXn

〉

= ‖f‖2 − 2

〈
f,

N∑
n=1

anXn

〉
+

N∑
m=1

〈
amXm,

N∑
n=1

anXn

〉

= ‖f‖2 − 2

〈
f,

N∑
n=1

anXn

〉
+

N∑
m=1

〈amXm, amXm〉

= ‖f‖2 − 2
N∑

m=1

〈f,Xm〉 am +
N∑

m=1

〈Xm, Xm〉 a2
m.

Now completing the square in am, we have

N∑
m=1

〈Xm, Xm〉
[
a2

m − 2
〈f,Xm〉
〈Xm, Xm〉am

]
=

N∑
m=1

〈Xm, Xm〉
[(

am − 〈f,Xm〉
〈Xm, Xm〉

)2

− 〈f, Xm〉2
〈Xm, Xm〉2

]
.
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Substituting this expression into the expression for EN above, we see that

EN = ‖f‖2 +
N∑

m=1

〈Xm, Xm〉
[(

am − 〈f,Xm〉
〈Xm, Xm〉

)2

− 〈f,Xm〉2
〈Xm, Xm〉2

]
. (6.34)

Therefore, the choice of am that will minimize EN is clearly

am =
〈f,Xm〉
〈Xm, Xm〉 ,

as claimed.

Corollary 11. (Bessel’s Inequality) Let {Xn} be a sequence of mutually orthogonal
functions in L2. Let f ∈ L2 and let An be the Fourier coefficients associated with Xn; that
is,

An =
〈f, Xn〉
〈Xn, Xn〉 .

Then
∞∑

n=1

A2
n

∫ b

a

|Xn(x)|2 dx ≤
∫ b

a

|f(x)|2 dx. (6.35)

Proof. Let am = Am in (6.34). Combining this choice of coefficients with the fact that EN

is nonnegative, we have

0 ≤ EN = ‖f‖2 −
N∑

m=1

〈f,Xm〉2
〈Xm, Xm〉2

〈Xm, Xm〉 = ‖f‖2 −
N∑

m=1

A2
m 〈Xm, Xm〉 . (6.36)

Therefore, we conclude that
N∑

m=1

A2
m 〈Xm, Xm〉 ≤ ‖f‖2 .

Taking the limit as N → +∞, the corollary follows.

Remark. Bessel’s inequality will play a key role in the proof of Theorem 7 on pointwise
convergence.

Theorem 12. (Parseval’s Equality) Let {Xn} be a sequence of mutually orthogonal functions
in L2. Let f ∈ L2. The Fourier series

∑
n AnXn(x) converges to f in L2 if and only if

∞∑
n=1

A2
n ‖Xn‖2

L2 = ‖f‖2
L2 . (6.37)
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Proof. By definition, the Fourier series
∑

n AnXn for f converges in L2 if and only if
∥∥∥∥∥f −

N∑
n=1

AnXn

∥∥∥∥∥

2

L2

→ 0 as N → +∞.

But, this means EN → 0 as N → +∞. Combining this with (6.36), the theorem follows.

We now have the necessary ingredients to prove Theorem 7 on pointwise convergence,
but first we introduce some notation. Without loss of generality, we may assume l = π.
Then the full Fourier series on [−π, π] for the function f is given by

f(x) ∼ A0 +
∞∑

n=1

[An cos(nx) + Bn sin(nx)]

where the coefficients are given by

A0 =
〈1, f〉
〈1, 1〉 =

1

2π

∫ π

−π

f(x) dx

An =
〈cos(nx), f〉

〈cos(nx), cos(nx)〉 =
1

π

∫ π

−π

cos(nx)f(x) dx n = 1, 2, . . .

Bn =
〈sin(nx), f〉

〈sin(nx), sin(nx)〉 =
1

π

∫ π

−π

sin(nx)f(x) dx n = 1, 2, . . . .

Let SN(x) be the N th partial sum of the full Fourier series. That is,

SN(x) = A0 +
N∑

n=1

[An cos(nx) + Bn sin(nx)] .

We need to show that SN converges pointwise to

1

2
[f(x+) + f(x−)] − π < x < π.

Substituting the formulas for the coefficients into SN , we see that

SN(x) =
1

2π

∫ π

−π

[
1 + 2

N∑
n=1

(cos(nx) cos(ny) + sin(nx) sin(ny))

]
f(y) dy

=
1

2π

∫ π

−π

[
1 + 2

N∑
n=1

cos(n(y − x))

]
f(y) dy.

The term

KN(θ) = 1 + 2
N∑

n=1

cos(nθ)

is called the Dirichlet kernel. With this definition, we write

SN(x) =
1

2π

∫ π

−π

KN(y − x)f(y) dy.

We list two properties of the Dirichlet kernel which will be useful in proving Theorem 7.
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•
∫ 0

−π

Kn(θ) dθ =

∫ π

0

Kn(θ) dθ = π for all positive integers N .

• KN(θ) =
sin

([
N + 1

2

]
θ
)

sin
(

1
2
θ
) .

The first property is an easy calculation. The second property can be proven as follows.

KN(θ) = 1 + 2
N∑

n=1

cos(nθ)

= 1 +
N∑

n=1

(einθ + e−inθ)

=
N∑

n=−N

einθ

=
e−iNθ − ei(N+1)θ

1− eiθ

=
e−i(N+ 1

2
)θ − ei(N+ 1

2
)θ

e−i 1
2
θ − ei 1

2
θ

=
sin([N + 1

2
]θ)

sin
(

1
2
θ
) .

Proof of Theorem 7. We need to show that for all x ∈ [−π, π] that SN(x) converges to
1
2
[f(x+)− f(x−)]. Fix a point x ∈ [−π, π].

Taking the 2π-periodic extension of f , we have

SN(x) =
1

2π

∫ π

−π

KN(y − x)f(y) dy

=
1

2π

∫ π−x

−π−x

KN(θ)f(θ + x) dθ

=
1

2π

∫ π

−π

KN(θ)f(θ + x) dθ.

Now using the first property of KN(θ) given above, we have

f(x+) =
1

π

∫ π

0

KN(θ)f(x+) dθ

f(x−) =
1

π

∫ 0

−π

KN(θ)f(x−) dθ.

Therefore,

SN(x)− 1

2
[f(x+) + f(x−)] =

1

2π

∫ π

0

KN(θ)[f(θ + x)− f(x+)] dθ

+
1

2π

∫ 0

−π

KN(θ)[f(θ + x)− f(x−)] dθ.
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Now we claim that as N → +∞ both of the terms on the right-hand side tend to zero, giving
us the desired result. We prove this for the first term. The second term can be handled
similarly.

Defining

g(θ) =
f(x + θ)− f(x+)

sin(1
2
θ)

,

and using the second property of KN(θ) above, we have

1

2π

∫ π

0

KN(θ)[f(θ + x)− f(x+)] dθ =
1

2π

∫ π

0

g(θ) sin

([
N +

1

2

]
θ

)
dθ.

Defining

φN(θ) = sin

([
N +

1

2

]
θ

)
,

it remains to show that 〈g, φN〉 → 0 as N → +∞. In order to prove this, we will make use
of Bessel’s inequality (6.35). We do so as follows.

First, we claim that {φN} is a mutually orthogonal sequence of functions in L2([0, π]). It
can easily be verified that

||φN ||2L2([0,π]) =
π

2
,

and, therefore, φN ∈ L2([0, π]). The orthogonality can be proven in the same manner that
we proved the orthogonality of {sin(Nπx/l)} on [0, l].

Second, we claim that g ∈ L2([0, π]). By assumption f is piecewise continuous. Therefore,
the only potential reason why g would not be in L2 is the singularity in g at θ = 0. Therefore,
we need to look at limθ→0+ g(θ). We have

lim
θ→0+

g(θ) = lim
θ→0+

f(x + θ)− f(x+)

sin(1
2
θ)

= lim
θ→0+

f(x + θ)− f(x+)

θ
· lim

θ→0+

θ

sin(1
2
θ)

= 2f ′(x+).

By assumption, f ′ is piecewise continuous. Therefore, g is piecewise continuous and conse-
quently g ∈ L2([0, π]).

Using the fact that g ∈ L2([0, π]) and {φN} is a mutually orthogonal sequence of functions
in L2([0, π]), we can make use of Bessel’s inequality. In particular, we have

∞∑
N=1

〈g, φN〉2
〈φN , φN〉 ≤ ‖g‖2

L2 ,

which implies
2

π

∞∑
N=1

〈g, φN〉2 ≤ ‖g‖2
L2 .

Now using the fact that g ∈ L2, we conclude that
∑∞

N=1 〈g, φN〉2 is a convergent sequence,
and, therefore, 〈g, φN〉 → 0 as N → +∞. This proves the theorem. ¤
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For proofs of the other convergence theorems, see Strauss, Section 5.5. We now show
that the infinite series we claimed were solutions of the wave equation are actually solutions.
We demonstrate this using the following example.

Example 13. We return to considering the initial-value problem for the wave equation on
[0, l] with Dirichlet boundary conditions,





utt − c2uxx = 0 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u(0, t) = 0 = u(l, t).

(6.38)

As shown earlier, any function of the form

un(x, t) =
[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

satisfies the wave equation and the Dirichlet boundary conditions. Now let

u(x, t) =
∞∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

, (6.39)

where

An ≡ 2

l

∫ l

0

sin
(nπ

l
x
)

φ(x) dx

nπc

l
Bn ≡ 2

l

∫ l

0

sin
(nπ

l
x
)

ψ(x) dx.

We claim that this infinite series u is a solution of (6.38). We see that u satisfies the
boundary conditions and the initial conditions (assuming ”nice” initial data to allow for our
convergence theorems). Therefore, it remains only to verify that this infinite series satisfies
our PDE. We prove so as follows.

Let φext, ψext be the odd periodic extensions of φ and ψ, respectively. Consider the
initial-value problem for the wave equation on the whole real line,





utt − c2uxx = 0 −∞ < x < ∞
u(x, 0) = φext(x)
ut(x, 0) = ψext(x).

(6.40)

By d’Alembert’s formula, the solution of (6.40) is given by

v(x, t) =
1

2
[φext(x + ct) + φext(x− ct)] +

1

2c

∫ x+ct

x−ct

ψext(y) dy.

Let ũ(x, t) = v(x, t) restricted to 0 ≤ x ≤ l. First, we claim that ũ(x, t) is a solution of
(6.38). Second, we claim that ũ(x, t) is given by the series expansion in (6.39), thus proving
that the infinite series (6.39) is a solution of (6.38). It is easy to verify that ũ is a solution

26



of (6.38). Therefore, it remains only to show that ũ(x, t) is given by the series expansion in
(6.39). We do so as follows.

Now for φ defined on [0, l], the Fourier sine series of φ is given by

φ(y) ∼
∞∑

n=1

Ãn sin
(nπ

l
y
)

where

Ãn =

〈
sin

(
nπ
l
x
)
, φ

〉
〈
sin

(
nπ
l
x
)
, sin

(
nπ
l
x
)〉 =

2

l

∫ l

0

sin
(nπ

l
x
)

φ(x) dx.

Now for a nice function φ, the Fourier sine series converges to φ on [0, l]. In addition, using
the fact that φext is the odd periodic extension of φ, we know that the Fourier sine series
above converges to φext on all of R. We can do a similar analysis for ψ. That is, the Fourier
sine series of ψ is given by

ψ(y) ∼
∞∑

n=1

B̃n sin
(nπ

l
y
)

where

B̃n =
2

l

∫ l

0

sin
(nπ

l
x
)

ψ(x) dx.

Now plugging these series representations into the formula for ũ(x, t), we have

ũ(x, t) =
1

2

[ ∞∑
n=1

Ãn sin
(nπ

l
(x + ct)

)
+ Ãn sin

(nπ

l
(x− ct)

)]

+
1

2c

∫ x+ct

x−ct

∞∑
n=1

B̃n sin
(nπ

l
y
)

dy

=
1

2

[ ∞∑
n=1

Ãn2 sin
(nπ

l
x
)

cos
(nπ

l
ct

)]
− l

2nπc

∞∑
n=1

B̃n cos
(nπ

l
y
)∣∣∣

y=x+ct

y=x−ct

=
∞∑

n=1

Ãn sin
(nπ

l
x
)

cos
(nπ

l
ct

)
+

l

nπc

∞∑
n=1

B̃n sin
(nπ

l
x
)

sin
(nπ

l
ct

)
.

But, this means ũ(x, t) can be written as

ũ(x, t) =
∞∑

n=1

[
An cos

(nπ

l
ct

)
+ Bn sin

(nπ

l
ct

)]
sin

(nπ

l
x
)

where

An = Ãn =
2

l

∫ l

0

sin
(nπ

l
x
)

φ(x) dx

Bn =
l

nπc
B̃n =

2

nπc

∫ l

0

sin
(nπ

l
x
)

ψ(x) dx.

Therefore, we have shown that the infinite series (6.39) is actually a solution of (6.38).
¦
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6.4 The Inhomogeneous Problem on an Interval

We now consider the inhomogeneous wave equation on an interval with symmetric boundary
conditions, 




utt − c2uxx = f(x, t) 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u satisfies symmetric BCs.

(6.41)

We will solve this using Duhamel’s principle. Recall from our earlier discussion that the
solution of an IVP for an inhomogeneous evolution equation of the form

{
Ut + AU = F ~x ∈ Rn

U(~x, 0) = Φ(~x)

is given by

U(~x, t) = S(t)Φ(~x) +

∫ t

0

S(t− s)F (~x, s) ds

where S(t) is the solution operator for the homogeneous equation
{

Ut + AU = 0

U(~x, 0) = Φ(~x).

Therefore, writing the inhomogeneous wave equation as the system,
[
u
v

]

t

+

[
0 −1

−c2∂2
x 0

] [
u
v

]
=

[
0
f

]

[
u(x, 0)
v(x, 0)

]
=

[
φ(x)
ψ(x)

]
,

letting S(t) denote the solution operator for this evolution equation, and defining S1(t), S2(t)
such that

S(t)Φ =

[
S1(t)Φ
S2(t)Φ

]
,

we see that the solution of the inhomogeneous wave equation on R is given by

u(x, t) = S1(t)

[
φ
ψ

]
+

∫ t

0

S1(t− s)

[
0

f(s)

]
ds.

We claim that we can use the same idea to solve the inhomogeneous wave equation on
an interval [0, l]. We state this formally for the case of Dirichlet boundary conditions, but
this can be extended more generally to any symmetric boundary conditions.

Claim 14. Consider the inhomogeneous wave equation on an interval (6.41). Let S1(t)
denote the solution operator for the homogeneous equation,





utt − c2uxx = 0 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u(0, t) = 0 = u(l, t).

(6.42)
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That is, let S1(t) be the operator such that the solution of (6.42) is given by

v(x, t) = S1(t)

[
φ(x)
ψ(x)

]
.

Then the solution of (6.41) is given by

u(x, t) ≡ S1(t)

[
φ
ψ

]
+

∫ t

0

S1(t− s)

[
0

f(s)

]
ds. (6.43)

Proof. As shown by our earlier discussion of Duhamel’s principle, defining u(x, t) by (6.43),
u will satisfy the PDE and the initial conditions. The only thing that remains to be verified
is that u will satisfy the boundary conditions. Let

Φ(x) ≡
[
φ(x)
ψ(x)

]
.

By assumption, S1(t)Φ satisfies (6.42) for all Φ. Therefore, S1(t)Φ(0) = 0 = S1(t)Φ(l).
Therefore,

u(0, t) = S1(t)

[
φ(0)
ψ(0)

]
+

∫ t

0

S1(t− s)

[
0

f(0, s)

]
ds

= 0 +

∫ t

0

0 ds = 0.

Similarly, u(l, t) = 0.

Example 15. Solve the initial-value problem,




utt − uxx = f(x, t) 0 < x < π
u(x, 0) = φ(x) 0 < x < π
ut(x, 0) = ψ(x) 0 < x < π
u(0, t) = 0 = u(π, t).

(6.44)

We know that the solution of the homogeneous equation,




vtt − vxx = 0 0 < x < π
v(x, 0) = φ(x) 0 < x < π
vt(x, 0) = ψ(x) 0 < x < π
v(0, t) = 0 = v(π, t)

is given by

v(x, t) =
∞∑

n=1

[An cos(nt) + Bn sin(nt)] sin(nx),

where

An =
〈sin(nx), φ(x)〉
〈sin(nx), sin(nx)〉 =

2

π

∫ π

0

sin(nx)φ(x) dx

nBn =
〈sin(nx), ψ(x)〉
〈sin(nx), sin(nx)〉 =

2

π

∫ π

0

sin(nx)ψ(x) dx
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for n = 1, 2, . . .. Therefore, the solution operator associated with the homogeneous equation
by

S1(t)

[
φ
ψ

]
=

∞∑
n=1

[An cos(nt) + Bn sin(nt)] sin(nx),

with An, Bn as defined above. Therefore,

S1(t− s)

[
0

f(s)

]
=

∞∑
n=1

[Cn(s) cos(n(t− s)) + Dn(s) sin(n(t− s))] sin(nx)

where

Cn(s) = 0

nDn(s) =
〈sin(nx), f(x, s)〉
〈sin(nx), sin(nx)〉 =

2

π

∫ π

0

sin(nx)f(x, s) dx

for 0 ≤ s ≤ t, n = 1, 2, . . ..
Therefore, the solution of (6.44) is given by

u(x, t) =
∞∑

n=1

[An cos(nt) + Bn sin(nt)] sin(nx) +

∫ t

0

∞∑
n=1

Dn(s) sin(n(t− s)) sin(nx) ds

(6.45)
with An, Bn, Dn(s) as defined above.

¦

6.5 Inhomogeneous Boundary Data

We now consider the wave equation with inhomogeneous boundary data,




utt − c2uxx = f(x, t) 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u(0, t) = g(t), u(l, t) = h(t).

Method of Shifting the Data

Ref: Strauss: Sec. 5.6.
Our plan is to introduce a new function U such that

U(0, t) = g(t)

U(l, t) = h(t).

Then, defining v(x, t) = u(x, t)− U(x, t), we will study the new initial-value problem which
now has zero boundary data,





vtt − c2vxx = f(x, t)− Utt + c2Uxx 0 < x < l
v(x, 0) = φ(x)− U(x, 0) 0 < x < l
vt(x, 0) = ψ(x)− Ut(x, 0) 0 < x < l
v(0, t) = 0 = v(l, t).

(6.46)
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In order for U to satisfy the conditions stated, we define U as a linear function of x such that

U(x, t) =

[
h(t)− g(t)

l

]
x + g(t).

Now Uxx = 0. Therefore (6.46) becomes




vtt − c2vxx = f(x, t)− Utt 0 < x < l
v(x, 0) = φ(x)− U(x, 0) 0 < x < l
vt(x, 0) = ψ(x)− Ut(x, 0) 0 < x < l
v(0, t) = 0 = v(l, t).

(6.47)

This problem we can solve using Duhamel’s principle discussed above.

Remark. If the boundary conditions g, h and the inhomogeneous term f do not depend on
t, then the method of shifting the data is especially nice because we can immediately reduce
the problem to a homogeneous IVP with homogeneous boundary conditions. In particular,
consider 




utt − c2uxx = f(x) 0 < x < l

u(x, 0) = φ(x) 0 < x < l

ut(x, 0) = ψ(x) 0 < x < l

u(0, t) = g, u(l, t) = h

Now considering (6.46), if we find U(x) such that

− c2Uxx = f(x)

U(0) = g

U(l) = h

then, letting v(x, t) = u(x, t)− U(x), we see immediately that v will be a solution of




vtt − c2vxx = 0 0 < x < l
v(x, 0) = φ(x)− U(x) 0 < x < l
vt(x, 0) = ψ(x) 0 < x < l
v(0, t) = 0 = v(l, t),

(6.48)

a homogeneous initial-value problem with Dirichlet boundary conditions.

6.6 Uniqueness

In the previous sections, we used the method of reflection and separation of variables to find
a solution of the wave equation on an interval satisfying certain boundary conditions. We
now prove that the solutions we found are in fact unique.

Claim 16. Consider the initial-value problem for the inhomogeneous wave equation on an
interval with Dirichlet boundary conditions,





utt − c2uxx = f(x, t) 0 < x < l
u(x, 0) = φ(x) 0 < x < l
ut(x, 0) = ψ(x) 0 < x < l
u(0, t) = 0 = u(l, t).

(6.49)
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There exists at most one (smooth) solution of (6.49).

Proof. Suppose there are two solutions u, v of (6.49). Let w = u − v. Therefore, w is a
solution of 




wtt − c2wxx = 0 0 < x < l
w(x, 0) = 0 0 < x < l
wt(x, 0) = 0 0 < x < l
w(0, t) = 0 = w(l, t).

(6.50)

Define the energy function

E(t) =
1

2

∫ l

0

w2
t + c2w2

x dx.

We see that

E(0) =
1

2

∫ l

0

w2
t (0, t) + c2w2

x(0, t) dx = 0.

We claim that E ′(t) = 0. Integrating by parts, we have

E ′(t) =

∫ l

0

wtwtt + c2wxwxt dx

=

∫ l

0

wtwtt − c2wxxwt dx + c2wxwt

∣∣x=l

x=0

=

∫ l

0

wt[wtt − c2wxx] dx + 0,

using the fact that w(0, t) = 0 = w(l, t) for all t implies that wt(0, t) = 0 = wt(l, t). As
w is a solution of the homogeneous wave equation, we conclude that E ′(t) = 0. Therefore,
using the fact that E(0) = 0, we conclude that E(t) = 0. Then, using the fact that w is a
smooth solution, we conclude that wx(x, t) = 0 = wt(x, t). Therefore, w(x, t) = C for some
constant C. Using the fact that w(x, 0) = 0, we conclude that w(x, t) = 0, and, therefore,
u(x, t) = v(x, t).
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