5 Wave Equation in R

5.1 Derivation

Ref: Strauss, Section 1.3, Fvans, Section 2.4

Consider a homogeneous string of length [ and density p = p(z). Assume the string is
moving in the transverse direction, but not in the longitudinal direction. Let u(x,t) denote
the displacement of the string from equilibrium at time ¢ and position x. Therefore, the
slope of the string at time ¢, position z is given by u,(x,t). Let T'(x,t) be the magnitude of
the tension (force) tangential to the string at time ¢ position x.
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Consider the part of the string between the points x; and x5. The net force acting on the
string in the longitudinal direction (z), denoted F}, between the points x; and xs is given
by
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But, by assumption, the string is not moving in the longitudinal direction, and, therefore,
the acceleration in the longitudinal direction is zero. Consequently, using Newton’s law,
F = ma, we conclude that
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In the transverse direction, the force acting on the string between the points x; and



at time ¢, denoted Fy, is given by

Fy|32 = T(z,t) sin 9|ﬁ
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Again, we are assuming that all motion of the string is purely in the transverse direction.
By Newton’s law, F = ma implies Fy(z,t) = mas(x,t) where as(z,t) denotes the component
of the acceleration of the string in the transverse direction at position x, time ¢. Therefore,
between the points x; and s,

z2
Fy(x,t)32 :/ puy(z,t) dx.
Therefore, we have
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Now if we assume u, is small (meaning small vibrations of the string), then
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This can be justified by the Taylor series expansion,
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Therefore for u, small, by (5.2), we have

T(xo,t) T(x1,t) pug(x,t) de. (5.2)

T, )y (22, 1) — T(a1, (31, 1) ~ / oy (2, 1) da.
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Multiplying this equation by and taking the limit as zo — x1, we have
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lim (T'(zo, t)ug (o, t) — T(x1, t)up(zq,t)) =~ lim / puy(x,t) dx
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— (T(x,t)u,(x, 1)), ~ pugy.

Therefore, the equation

gives us a simplified model for the motion of the string.
By assuming u, is small, by (5.1), we have

T(ZEQ, t) ~ T(l’l, t)
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which means T is independent of x, and, therefore, the tension is constant along the string.
If we also assume T is independent of ¢ and p is constant along the string, equation (5.3)
can be simplified to

T

Uy = —Ugg-

In general, T" and p are nonnegative. Therefore, letting

T
c=4/—
p
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our equation becomes
This is known as the wave equation. We will see later that c represents the wave speed.

5.2 General Solution for Wave Equation in R

Ref: Strauss, Section 2.1

Claim 1. The general solution of
U — gy = 0 r€R (5.4)
15 given by
u(x,t) = f(x + ct) + g(z — ct) (5.5)
for (smooth) functions f and g.

Proof of Claim 1. (Method 1: Reduction to First-Order Equations)
Consider
Uy = Uy, reR

This equation can be rewritten as
(at + c@m)(at — c@m)u = 0.
Let
V= Up — Cly.

Therefore,
(8t + c@m)v =0.

That is, v is solves a first-order transport equation. Consequently, the general solution for v
is given by
v =h(x —ct).

Now it remains to solve
up — cu, = h(x — ct). (5.6)



Using the method of characteristics, we define the characteristic equations as

dt
o
ds
@ .
ds
d
d—z = h(x — ct).
One solution of this system is t = s, x = —cs and dz/ds = h(—2cs) which implies
1 —2cs
z(s) = 3%/ h(T)dr.

Letting u(x(s),t(s)) = z(s), we arrive at a particular solution of (5.6) of the form
1 0
t)=— h(s)d
wat) =50 [ hs)ds
= g(z — ct).
We also note that any function of the form wu(z,t) = f(x + ct) satisfies the homogeneous

equation
up — cuy, = 0.

Therefore, any function of the form
u(w,t) = fla+ct) + gz — ct)

will give us a solution of (5.4).
To show that we have found all of the solutions of (5.4), we introduce the function w by
defining w = w(x,t) as follows. Let u be a solution of the wave equation. Therefore,

up — cu, = h(x — ct)

for some function h. Now let ]?be an arbitrary smooth function and define

w(z 1) = u(z, t)+f(x+ct)—i/ hs)ds.

It is straightforward to show that
wy — cw, =0,

and, therefore, w(z,t) = k(z + ct) for some function k. Consequently,
u(x,t) = f(x + ct) + g(x — ct)

where f(z + ct) = k(z + ct) — f(z + ct) and g(z — ct) = =
arbitrary. Therefore, the general solution of (5.4) is given by

Proof of Claim 1. (Method 2: Characteristic Coordinates)

f s)ds. But, k, f, h were
(5. ) O
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Another way of deriving the general solution (5.5) of (5.4) is by making a change of

variables. Rewriting

2
Ugp — C Ugzy = 0.

as

(O + c0,) (0 — cOp)u = 0,

we would like to introduce coordinates &, n such that

O = O, + O,
0, = 0 — cd,.

That is, we want

Te=c Ty = —cC
That is,
t=&+n
T =c§ —on,
which implies
E= (et
1
= ——(z—ct
n=—g(z—ct)

For simplicity, we make a change of scale, introducing the characteristic coordinates

E=2ck =x+ct
n=—2cn=ux—ct.

In these new coordinates, we have

1 1
1 1
8;]‘ = —%@7 = —2—6[(915 — Cax]

which implies
—402858ﬁu = (0 + ¢02) (0 — cOp)u = 0.
Consequently,

which implies

= f(x +ct) + g(x — ct)



for arbitrary functions f and g, thus proving our claim. OJ

Geometric Interpretation. The general solution of the wave equation is the sum of two
arbitrary functions f and g where f = f(z + ¢t) and g = g(z — ct). In particular, f(x + ct)
is a wave moving to the left with speed ¢, while g(x — ct) is a wave moving to the right with
speed c.

5.3 Initial Value Problem

Consider the following initial-value problem:
utt—c2um:0, —oo < <00

u(,0) = 9(z) (5.7)
u(z,0) = (x).

As should be familiar from ODE theory, we need to prescribe two pieces of initial data to
hope to get a unique solution. In the previous section, we showed that

u(x,t) = f(x + ct) + g(z — ct)

is the general solution of the PDE. We look for a solution of this form which will satisfy our
initial data. This means we need

u(z,0) = f(z) + g(x)

= ()
uy(z,0) = cf'(x) — cg'(x) =

().

Solving this system, we get

R VRN
f—§(¢+z)
dz%(&—%)

which implies
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Using the fact that
o(z) = f(z) + g(z),
we see that C'; + Cy = 0. Therefore, we conclude that

u(z,t) = f(x +ct) + g(x — ct)

1 1 x+ct 1 1 T—ct
~ |zt g [ o]+ [ele-ar-5 [,



which simplifies to

x+ct

(1) = %[¢(m vet) ol e+ 5 [ wds (5.8)

r—cC

This solution formula (5.8) is known as d’Alembert’s formula for the unigue solution of
the initial-value problem (5.7) for the wave equation on R.

5.4 Energy Methods
Ref: Strauss, Section 2.2; Fvans, Section 2.4.3

5.4.1 Domain of Dependence

By d’Alembert’s formula (5.8) for solutions of the wave equation, we see that the value of
u at any point (zg,%) € R? depends only on the values of the initial data in the interval
[xg — cto, o + cto]. That is to say, the domain of dependence for the point (g, ) is the
cone {(z,t) : xg—c(to —t) <x <o+ c(to — t)}.

t

(X0, o)

A x

Xo— Cto Xo X+ Ctg

Similarly, we see that the initial condition at the point (zy,0) affects only that part of
the solution in the cone {(z,t) : t > 0,29 — ¢t < x < xo + ct}. This region is known as the
domain of influence of the point (zg, 0).

X=Xo—\ X=Xy+Ct

I X

X

Therefore, if the initial data is supported in an interval {x : |x — 29| < R}, then the
solution w is supported in the region {(x,t) :t > 0,20 — R — ¢t < x < zo+ R+ ct}.



X=X,— R-ct
X=Xg+ R+t
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Therefore, for initial data with compact support, the solution u(x,¢) will have compact
support in R for any time ¢. This phenomenon is known as the finite propagation speed
for the wave equation.

5.4.2 Energy

We now define an energy associated with solutions of the wave equation. In general, an
energy associated with a PDE is a quantity which is conserved for a solution u over time.
For a solution u of the wave equation on R, we define the energy of u at time t as

E(t) = 1/_OO [u?(x,t) + ui(w,t)] dr. (5.9)

o0

Claim 2. Let u be a solution of the initial-value problem (5.7). Assume the initial data ¢
and 1 have compact support. Then the energy (5.9) of the solution u is a conserved quantity.

That is, E'(t) =0, and, therefore, E(t) = E(0).

Proof. From the definition of energy (5.9), we have
E'(t) = —/ [2ugtyy + 26 Uy d.
Integrating by parts, we see that

oo o
/ Cugug dr = lim Cquutlijb_b—/ gy di.

0o b—oo —o0

Combining the fact that ¢ and ¢ have compact support with the finite propagation speed
described in the previous section, we know that for any time ¢ > 0, u(x,t) has compact
support. Therefore, the boundary terms above drop out. Consequently, we have

1 (o]
E'(t) = —/ 2wty — 262 Ugpty] da

—00

oo
— / Ut [utt —_ CQUxx] dZE

o)

But, u is a solution of the wave equation. Therefore, u; — c?u,, = 0. Consequently, we have
shown that E'(t) = 0, as desired.
m



One question you may ask is how the energy (5.9) above was defined. How did we know
this was going to be a conserved quantity? There is a relation between the energy defined
above and the traditional notion of kinetic energy. In particular, from physics, the kinetic
energy of a moving body is defined to be %va. Therefore, for a wave u, we can define its
kinetic energy as

1
KE = §/pufdx,

which is a part of the energy defined above (multiplied by an extra constant factor p). Then,
we can think of the potential energy as

1
PEzﬁ/pui.

Alternatively, however, we can think of the energy of a moving body as any conserved
quantity. With this idea, let’s see if we can find a conserved quantity for a solution u of the
wave equation in R.

Suppose u is a solution of the wave equation in R such that u has compact support.
Therefore, u satisfies

Uy — gy = 0.

Now multiply this equation by u; and integrate over R. Doing so, we have
oo oo 1
0= / ety — Clye] dr = / (5[(ut)2]t — c2utum> dx. (5.10)

Now, as we did above, we can integrate this second term by parts,

—? / Uy A = 2 / Uy Uy, AT
o [T (1 2
= C / (5[(“:&) ]t) dl’,

using the fact that the boundary terms vanish for v with compact support. Now plugging
(5.11) into (5.10), we have

(5.11)

1 o0
0= 5@/ [u? + c*u?] dx.

(e 9]

Consequently, we have shown that E'(t) = 0.

5.4.3 Energy Methods & Domain of Dependence.

We now use the energy defined above to prove the finite propagation speed associated with
solutions to the wave equation. Of course, d’Alembert’s formula has already proven the
finite speed of propagation. However, this energy method technique is useful because it can
be applied to other equations.

Consider the initial value problem for the wave equation

Uy — Cllypy = 0 in R x (0, 00)
u(z,0) = ¢(z)
Ut(x7 0) = 2/}(CU)
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Let
B(zg, to) = {z: |z — 20| < cto}.

Let
C(zo,t0) ={(2,t) : 0 <t <y, |x — z0| < |t —to|}
t
(Xo, to)

ClXy.to)

:/ + * X
Xo —Cty \ Xo/ X+ Cto

B(X,.to)

Theorem 3. (Finite Propagation Speed) If ¢ = 0 = ¢ on B(xo, 1), then u =0 in C(xg,to).

Proof. Let

e(t) = 1/ ui(x,t) + ul(x,t) do 0<t<t
2 JB(wo,to—t)
We see that e(t) is the energy of u at time ¢ for x € [xg—c(tg—t), zo+c(to—t)]. Therefore, e(0)
is the energy of u at time t = 0 for x € [zg—cty, xo+cto] = B(xo,to). If =0 =1 € B(xo, 1),
then €(0) = 0. Now we claim that e(t) < e(0) for all ¢t € [0,1o], and, therefore, e(t) = 0.
Consequently, u = 0 in C(xq,ty). Therefore, it remains only to show that e(t) < e(0), in
other words, €'(t) < 0.
For e(t) as defined above, we see that

1 x0+c(to—t)
e(t) = —/ up(z,t) + *ul(x,t) do
2 zo—c(to—t)
1 a:0+c(toft) 0
== / ui(z,t) + ul(x,t) do + / ui(z,t) + ul(x,t) do
2 0 zo—c(to—t)
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which implies that
.’Zo+c(t0 t) c
aa:/ (st + i) do = S (3, 1) + U, 0) et o
0

0

C

b i P do = S ) + (w0 e
mo—c(to—t)

motke(i=to) 2 C/ 9 2.2
:/ (i + CPtyttar) d = (0 (2, 1) + P02, 1)) lometee-o

O—C(t—to)

C
- 5(“? (ZL’, t) + C2Ui(l’7 t))lx:xo—c(t—to)

xo+c(t—to) ) w0 te(to—1) ¢ ) o
= / U (Ugt — C Uy ) dT + € u$ut| : (to—t) - Q(ut (z,t) +c ua:(w7t))|z=xo+6(t*to)
.’L'()*C(tfto)
C
- _(u%( ) + CQU?("E )= =z0—c(t—to)

2
) 2 C 9 9

[_iut x,t) + cCuzuy — 20 U (as,t))} | z0+e(t—to)

[ c
2

=0+ (z,1)
c
Sub(e,t) = gt — S (w,0))| Lag-ete-to

+
c 2 2

c
3 [uf + 2cuzus + cu

&
5 [ut + Cua:] 2 |xofc(t7t0)

= —5 [ — 2cugu; + C () } |x0+ct to) —

C
= __[ut - Cu$]2|10+6(t7t0) -

2
<0,

] xo—c(t—t())

as claimed. Therefore, e(t) < e(0) = 0. But, e(t) > 0. Therefore, e(t) = 0, which implies
up = u, = 0 in C(xg,tp). Consequently, u must be a constant. But, v = 0 at t = 0.
Therefore, u = 0 in C(zo, to). O

5.5 Waves with a Source

Consider the initial-value problem for the inhomogeneous wave equation on R,

Uy — Clyy = f(z,t)

u(z,0) = ¢(x) (5.12)
u(z,0) = ()

Theorem 4. The unique solution of (5.12) is

a:+ct z+c(t—s)
u(:z:,t):%[(b(:c—l—ct)—i—gb(:c—ct)]—i—i/ ds+—// e s)dyds.

—ct

(5.13)

Below we will give three different proofs of this theorem. They each provide a different
way of looking at this problem.

Proof of Theorem 4: (Method 1: Reduction to First-Order Equations)

11



We factor our equation as
(O + €02)(0p — cOx)u = f(z,t).

Now let v = (0; — ¢0,)u. Therefore, v is a solution of the following initial-value problem for
an inhomogeneous transport equation

v+ cv, = f(x,t)
v(z,0) = uy(z,0) — cuy(z,0) = (x) — cd'(x)

Now, we introduce the characteristic equations

dt

=1

ds

ds

dz

- = t
= f)

with initial conditions

First solving our characteristic ODEs for ¢t and =, we have

t(r,s) =s

x(r,s) =cs+r.

Therefore, our equations for z become

dz
ds
Solving the ODE, we have

= f(es+r,s) 2(r,0) = ¥(r) — g (r).

2(r,s) = /OS f(cs+7r,3)ds+(r) — cd'(r).

Solving for r, s, we get

o(, 1) = /Otf(c'é'—i— T — ot 3) 5+ vz — cb) — odl (z — ct).

Now it remains to solve

up — cuy = v(w,t)
u(z,0) = o(x)

12



Again, this is just an initial-value problem for an inhomogeneous transport equation. We
introduce the characteristic equations,

dt
- -1
ds
dx
-
ds
dz
e t
dS U(J}, )
with initial conditions
t(r,0) =0
x(r,0) =7
z(r,0) = ¢(r)
Our equations for ¢, x are given by
t(r,s) =s
x(r,s) = —cs + .

Therefore, our equations for z become

dz

e v(—cs+r,s) z(r,0) = é(r).

Solving this, we have
2(r,s) = / v(—cs' +r,8)ds" + o(r)
0

:/S [/S f(cS+[—cs' +71] —cd,35)ds| ds'
0o |Jo

+ /S [p(—cs' +1r —cs') —cd'(—cs' + 1 —cs')] ds’ + o(r)
0

= /S [/S f(cs—2¢s +7‘,§)d§] ds'
o |Jo
+ /S [p(—2cs" + 1) — cd'(—2¢s" + 1) ds' + &(r)
0

Now solving for r, s, we have r = x 4 ¢t and s = t. Therefore, our solution is given by

u(:z:,t):/t /8 f(c8—2¢s' +x + ct,5)ds| ds
0 L0 (5.14)

+ /t [1)(=2¢s' + x + ct) — c¢'(—=2¢s' + x + ct)] ds' + ¢p(x + ct).
0
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Now we need to look at each of the four terms on the right-hand side above. First, making

the change of variable y = —2¢s’ 4+ x + ct, we have
t 1 ot
/ (—2cs' +x+ct)ds' = P(y) dy
0 2C xr—ct

t 1 x+-ct
_c/ ¢ (—2cs' +x +ct)ds' = —5/ @' (y) dy
0 x

= %Qﬁ(q} —ct) — %qﬁ(:p + ct).

Therefore, the last three terms in (5.14) are just

x+ct

%[gb(x +ct) 4 ¢la —ct)] + — Y(y) dy

2c

x—ct

Therefore, it remains to look at the first term in (5.14). Making the change of variables
y=cs—2cs' +x+ctand s =5, we have

z+c(t—s)
// f( s—2cs+x+ct~)dsds—// s)J dy ds,

where J is the Jacobian of the change of variables. That is,

Therefore, the first term in (5.14) is

z+c(t—s)
/ / s)dyds.

Therefore, our theorem is proved.

Proof of Theorem 4: (Method 2: Using Green’s Theorem)

Ref: Strauss, Section 2.4
Fix a point (zg,t). Let A = {(z,t) : 0 < t < to; |z — xo| < |t — to|}, the domain of
dependence for the point (xg,ty). Integrating the wave equation

Uy — CPlypy = f(z,t)

// Uy — iy dx dt = / f(z,t) dz dt. (5.15)
A A

14

over A, we have



By Green’s theorem, we know

[ (229 wra— [ pirs o

where JA is the boundary of A traversed in the counterclockwise direction.

t
(Xo, to)
L L,
A
L e
Xo —Cty Lo Xo+ Ctg

Therefore, we have

— //A ((Cug)e — (we)e) dadt = — /BA (Puy dt + vy do)
- _i/L (Puy dt + uy dz) .

Now, first
zo+-clo
—/ (CCug dt + vy dz) = —/ u(z,0) dx
to o (5.16)
= —/ () de.
xo—cto
Next, on L, ‘2—? = —c. Therefore,

— / (CCug dt + vy dz) = c/ (ug dz + uy dt)
Ly Ly

= c/Ll du (5.17)

dz

while on Lo, G = c. Therefore,

- / (Cug dt + vy dx) = —c/ (uy dz + uy dt)
Lo Lo

= _C/Lz du (5.18)



Therefore, combining (5.16), (5.17) and (5.18) with (5.15), we conclude that

xo+-clo

2cu(xg, tg) — cop(xo + cto) — cp(xo — cto) — / x)dx = /A f(z,t) dz dt.

o—cto

Consequently, we conclude

1 1 Ct()—i-ct() xo-l—c to— t)
u(zo, to) = §[¢(xo + cto) + ¢(xg — cto)] + % / x)dr+ — / / f(z,t) dxdt,

0—cto o—c(to—t)
as desired. 0
Proof of Theorem 4: (Method 3: Operator Method (Duhamel’s Principle))

Motivation
We start by reviewing some ideas from ODE theory.

First-Order ODE
Consider the first-order inhomogeneous ODE

{ Z’((g)) i Z.L(t) = f(t) (5.19)

Multiplying both sides of the ODE by the integrating factor e, we have
(eu) = e £ (1
and therefore,
ey = /t e f(s)ds + C,
which implies 0
u(t) = e /t e® f(s)ds + Ce™,
0

Then, substituting in ¢ = 0, we see that
t
u(t) = g —I—/ e_“(t_s)f(s) ds
0

is the solution of the initial-value problem (5.19). Defining the solution operator

S(t)p = e "o,
we see that

u(t) = S(t)¢—|—/0t5(t— s)f(s)ds.

Notice that uy(t) = S(t)¢ is the solution of the homogeneous initial-value problem



This technique of using the solution operator associated with the linear equation to solve
the inhomogeneous problem is known as Duhamel’s principle.
We now try the same technique with a second-order ODE.

Second-Order ODE

Consider the second-order inhomogeneous ODE

u”(t) + a’u(t) = f(t)

u(0) = ¢ (5.20)
ut(0) = .
We can write this equation as a system, by introducing a new function v, such that
Uy = av
vy = —au + E f

or, in matrix form as

which can be rewritten as

Letting

our equation can be written as

U+ AU = F.
Our initial conditions u(0) = ¢, v/(0) = ¢ imply

Defining

we can rewrite our initial-value problem (5.20) as

U+ AU = F
' (5.21)
U(0) = .
Multiplying the ODE in (5.21) by the matrix exponential e = > %, our equation

becomes
(eAtU)t - AtF7

17



which implies

t
U= eAt/ e F(s)ds +e MC.
0

Our initial condition U(0) = ® implies our unique solution of (5.21) is given by
¢
Ut) = e M +/ e A F(s) ds.
0

Defining the solution operator

StW = e~ MW,

we see that our solution is given by
t
Ut)=St)d + / S(t—s)F(s)ds.
0

Again, notice that S(t)® = e~'® is the solution of the homogeneous initial-value problem,

U+ AU =0
U(0) = o.

Consequently, we have been able to write the solution of the inhomogeneous problem using

the solution operator for the homogeneous problem. We now try to extend these ideas to

solving inhomogeneous partial differential equations. In particular, we look here at the wave
equation.

We return to the initial value problem for the wave equation,

U — Py = f(,1)
u(z,0) = ¢ (5.22)
u(z,0) = 1.

Using the ideas from the case of the second-order ODE described above, we begin by writing
the wave equation as a system. In particular, letting v = u;, we can write the inhomogeneous
wave equation as

U =0

2
Utzcuxx+f7

which can be written in matrix form as

Letting



our equation can be written in matrix form as
Ut + AU == F,

where A is an operator matrix. Our initial conditions u(z,0) = ¢(x), us(x,0) = ¥ (z) imply
_ |u(@,0)] _ fu(z,0)] _ o)
v =100 = () = )

o= 0]

our initial-value problem (5.22) can be rewritten in matrix form as

Defining

(5.23)

U +AU = F
U(x,0) = &.

Our hope is that if we can find the solution operator S(t) for the homogeneous problem,
then the solution of the inhomogeneous problem (5.23) will be given by

Uz, t) = S(t)CID—i-/t S(t—s)F(s)ds.

Therefore, we start by considering the homogeneous problem

U+ AU =0
't (5.24)
U(z,0) = .
Of course, this is just the initial-value problem for the homogeneous wave equation
Uy — gy = 0
u(z,0) = ¢(z)
uy(,0) = ().
By d’Alembert’s formula (5.8), we know the solution is given by
1 1 x+ct
u(@,t) = 5[z +ct) + ¢z — ct)] + o U(y) dy
z—ct
Therefore, the solution of (5.24) is given by
Ulx,1) = [ 30w + ct) + oo — )] + 5, [T () }
’ s5lo'(z +ct) = ¢'(x — et)] + l(x +et) + w(fC —ct)]
In other words, defining the solution operator S(t) as
S(H)® = S(t) m
(5.25)

{ gz +ct) + oz — cb)] + & [T p(y }
S0+ ct) = dla—ct)] +4 [w<x+ct>+w<x—d>] |
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we see that the solution of (5.24) is given by S(t)®
As stated above, our conjecture is that the solution of the inhomogeneous initial-value
problem (5.23) is given by

Ulx,t)=S({t)® + /t S(t— s)F(s)ds, (5.26)

with S(t) as defined in (5.25). Looking at the first component of this vector-valued equation
(5.26), we see this would imply

1 1 x+ct z+c(t—s)
o) = glote+et) + o el + o [ v+ [ o [ <) dy ds.

2c T c(t—s)

Of course, as we have already shown by two other methods, this is indeed the unique solution
of the initial-value problem for the inhomogeneous wave equation (5.12).

O

Duhamel’s Principle

The nice property of using this solution operator technique, also known as Duhamel’s
principle is that it extends to much more general PDEs. Consider a general initial-value
problem for an evolution equation of the form

U+ AU = F
{ Tt (5.27)

U(Z,0) = O(2),

where ¥ € R™ U : R™ x [0,00) — R", F': R™ x [0,00) — R™ and A is an n x n linear
operator matrix independent of ¢.
Suppose Uy (Z,t) = S(t)®(Z) is the solution of the homogeneous initial-value problem

U+ AU =0
t . (5.28)
U(Z,0) = ®(2).
Then the solution of the inhomogeneous problem (5.27) is given by
t
U(Z,t) =S(t)®(T) + / S(t — s)F(Z,s) ds. (5.29)
0

To be precise about this statement, we would need to deal with convergence issues of the
integrals, etc. So, here, we just provide a formal proof of this statement. First, we show that
u defined in (5.29) satisfies our initial condition. By assumption,

Un(T,1) = S(t)®(7)

satisfies (5.28). Therefore, U,(Z,0) = S(0)®(Z) = ®(Z). Consequently, for U defined in
(5.29), U(x,0) = S(0)®(Z) + 0 = ®(&). Next, we need to show that U defined in (5.29)
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satisfies the inhomogeneous PDE. We have

MZQﬂﬂﬂ@ﬁ+5®ﬂ%ﬁﬂ+%¥S@—ﬂF@¢DMs

t

:—Aﬂﬂ@@y+F@Jy—/nAﬂt—ﬁF@Jﬁk

:ﬂﬁw—AF@M@+/S@—@ﬂﬁg@]
_ F(#1) - AU,

Therefore, we conclude that
U+ AU = F(Z,1),

as desired.

5.6 Reflections of Waves
Ref: Strauss, Section 3.2

5.6.1 The Wave Equation on a Half-Line

Consider the following Dirichlet problem on the half-line:

Ut — CPUyy = 0 0<z <400

u(z,0) = ¢(x) x>0

u(z,0) =¢(x) x>0 (5.30)
u(0,t) = 0 t>0.

We look for a solution by extending the functions ¢(z) and ¥ (z) to all of R by odd reflection.
That is, let

_ [ ol=) x>0
o) =1 %5 120

And, similarly, let
_ [ (=) x>0
v = Y50y 20
Let @ be the solution of the initial-value problem on the whole real line with initial data

Poad () and Yoaa(z),

Uy — Cligy =0 —00 <2 <00

u(x,0) = ¢oaa(r)

U (z,0) = Yoaa().
Let u(z,t) = a(x,t) for 0 < x < oo (restriction of @ to the half-line). Claim: w(z,t) is the
solution to the Dirichlet problem on the half-line (5.30).

Clearly, u satisfies the PDE for 0 < x < 00, as u = u and u satisfies the PDE on the
whole real line. It just remains to check that u satisfies the initial conditions. But, for x > 0,
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u(z,0) = (x,0) = Poaa(r) = ¢(z) and u(z,0) = @ (z,0) = oqa(x) = ¥(x). Therefore,
u(z,t) = u(x,t) for x > 0 is the solution of (5.30).

Now, we look for a formula similar to d’Alembert’s formula for the solution of this
problem. From d’Alembert’s formula, we know 4 is given by

x+ct

fb(l’, t) = %[gﬁodd(x -+ Ct) + Qbodd(l’ — Ct)] + % , wodd(y) dy.

r—C

Fort > 0, if x > ct, then ¢oqq(x —ct) = ¢(x —ct) and ¢oga(x +ct) = ¢p(x+ct). Therefore,
for t > 0, x > ct, our solution is given by

z+ct

u(z,t) = %[qb(x +ct) + d(x —ct)] + — ¥(y) dy, for t > 0,2 > ct. (5.31)

2c

X —Ci

Now consider t > 0, x < ct, then ¢oaa(x — ct) = —¢(ct — x), and Yoaa(y) = —1(—y) for
y < 0. Therefore,

1 x+ct 1 x+ct

1 0
5o | vt =o [ vy s [ vy

2¢ r—ct 2¢ 0
1 x+ct

5[ a5 [ vy

2c Jo
1 ct+x

= — Y(y) dy.

2C ct—x

Therefore, for t > 0, x < ct, our formula becomes,

ct+x
u(z,t) = %[gzﬁ(m +ct) — ¢(ct — )] + % Y(y) dy, for t > 0,z < ct. (5.32)
ct—x
t
(Xo, to)
nal . — X
Xo—Cl| ctyx, Xo+ Clo

Inhomogeneous Wave Equation on a Half-Line
We now consider the inhomogeneous wave equation on a half-line with Dirichlet boundary
conditions,
Uy — CPUge = f(,1) 0<z<oo

u(z,0) = ¢(x) 0<z<oo
u(,0) = () 0<z<o0 (5.33)
u(0,t) =0 t>0.
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As described above, we extend the initial data to be odd. Here we also extend f(x,t) to
be odd about the line z = 0 for all £. Now consider the wave equation on the whole line

U — C2ux:1: = fodd(xa t)
u(z,0) = Poaa() (5.34)
ur(x,0) = Yoaa(x).

Now the unique solution u of (5.34) is given by d’Alembert’s formula (5.8) as

x+ct

wodd( )

z+c(t—s)
/ / fodd Y,s )dy ds.

Now we claim that u(z,t) = u(z,t) for x > 0 is the unique solution of (5.33). Clearly
u satisfies the PDE for > 0. In addition, u satisfies the initial conditions (as described in
the previous case). Therefore, the only thing that it remains to check is that u satisfies the
boundary condition u(0,t) = 0 for all ¢ > 0. This would certainly be true if u(z,t) was an
odd function in x. But, this can be seen easily from (5.35). Therefore, u solves (5.33). It is
left as an exercise to verify that u is the unique solution.

Now for a point (xg,ty) with ¢y > 0 and 2 > ctg, then our solution formula is

W, 1) = 5 Buaa(e + ) + boaalw — )] + o

(5.35)

1 1 xo+clo
’LL(.Z'(), to) 5 [¢(3§'0 + Cto) + ¢($0 — Cto)] + — 9% / w(y) dy
xo—Ccto
so+e(to—s) (5.36)
/ / y,s)dyds to > 0,29 > cty.
xro—C to s

Therefore, the domain of dependence is the cone {(z,t) : t > 0;]z — x| < |t — to|}-
Alternatively, if (zg, ) is a point such that tq > 0, z¢ < ctp, then our solution is given by

1 xo+cto
(o, 10) = 3[6(0 + cto) — ety — )] + - / V() dy
cto—xo
sotelty—s) (5.37)
/ / y,s)dyds to > 0,z < cty.
(to S) xo

Therefore, the domain of dependence is the region shown in the figure below (5.32).
Remark: Alternatively, we could derive the solution formula for (5.33) using Duhamel’s

principle. As before, defining
U 0 -1
v=i] A= b 3



we can write (5.33) as the system

U+ AU = F 0<x<oo
U(z,0) = @(ag) . 0<z<o0 (5.38)
700 = 0.0 = o
From (5.31) and (5.32), we know the solution of the homogeneous system
U +AU =0 0<z <
U(x,0) = <I>($O) 0<x<oo (5.39)
00.0= 0.

in terms of ¢ and 1. (at least for ¢ > 0; the case t < 0 can be handled similarly) As a result,
we can write the solution of (5.39) in terms of a solution operator S(t) defined as follows.
For t > 0, x > ct, we define S(t) such that

no | et £ ol —et)] + 5 [T () dy o
S(t)2(x) {g[gﬁ’(x +ct) — ¢'(x — ct)] + %[1/1@ +ct) +(x — ct)]} t>0,2>ct.

For t > 0, x < ct, we define S(t) such that

30z +cf) — (et — )] + 5 [ v(y) dy o
{g[qb’(x +ct) — ¢ (ct — x)] + %W(aﬁ +ot) — (et — x)]} t>0,r <ct.

By Duhamel’s principle, the solution of (5.38) “should” be

S()®(z) =

Uz, t) =S(t)®(x) + /0 S(t—s)F(x,s)ds.

While we have verified that a function defined in this way will satisfy the inhomogenous PDE
and the initial conditions, we should also verify that this function will satisfy our boundary
conditions. In fact, this is true. We leave it to the reader to verify. Consequently, the
solution of (5.33) will be given by the first component of U(z,t). Using the definitions of
S(t) above, we see that the solution of (5.33) is given by (5.36) and (5.37) in the regions
t>0,x>ctandt >0,z < ct respectively.

5.6.2 The Finite Interval

Now consider the wave equation on a finite interval which satisfies Dirichlet boundary con-
ditions,

Uy — CUyy = 0 O<zx<l

u(z,0) = ¢(x 0<z<l

u(z,0) = (x 0<z<l (5-40)
u(0,t) =0 =wu(l,t)
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Motivated by the previous section, we extend our initial data ¢(x) and ¢ (x) to be odd with
respect to both x = 0 and x = [. In particular, define

_ | o(=) 2nl <z < (2n+ 1)1
Poal) = { —¢(—z)  (2n+1)l <z <2nl

Similarly, define ¥ey ().

} Q(X)
X
- | 2l
Let u(x,t) be the solution of
&tt—c2ﬁm:0, —o0o < <00
ﬂ(x, O) - gbext(l‘)
(2, 0) = Yext ().
We know  is given by d’Alembert’s formula (5.8) as
- 1 z+ct
u(z,t) = §[¢ext(x + ct) + Gexi (v — ct)] + % VYext (y) dy (5.41)
r—ct

Let u(z,t) = a(z,t) for 0 < x <. We claim u is the unique solution of (5.40). To prove this
claim, first we note that u clearly satisfies the PDE on the interval 0 < x < [, as u satisfies
the PDE on the whole real line. Next, we check that the initial conditions are satisfied. But,
for 0 < z <[, u(x,0) = u(x,0) = Pext(r) = ¢(x) and u(z,0) = U(z,0) = VYext () = Y(x).
Therefore, the initial conditions are satisfied. Last, we show that the boundary conditions
are satisfied. From the formula for u(x,t) (5.41), we see that u(x,t) is odd with respect to
x =0 and z = [ for all t > 0. Therefore, u(0,t) = 0 = w(l,t) for all £ > 0 which implies
u(0,t) =0 =wu(l,t) for all ¢ > 0, as desired.

Now we can use (5.41) to find the solution u(x,t) of (5.40) at any point (z,t) in terms of
the initial data ¢, 1. Consider the following example. Let (xq,t) be the point shown below.
Then using (5.41), we have a formula for u(xg,t) in terms of @ey; and 1eyy. We can write
this in terms of ¢ and ¢ as follows.
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L Goly)

—_— | — —T— X
X0+Cto_2|

First, we see that

—l<xg—cty <0
2l < xo + cty < 3.

Using the fact that ¢y is 2l-periodic, we know

Pext (To — cto) = —Pexi(cto — 7o) = —(cty — x0),
while
Qbext(x() + Cto) = ¢ext(x0 + Cto - 2[) = gb(xo + Ct() - 21)
In addition,

zo—+cto 0 l 21 zo—+cto
L V() dy = / ey dy + /0 o)y + [ i)y + / V(1) dy

o—cto o—cto 21

_ / T ) dy + / () dy — / () dy + / T )y
= —/;O_xo U(y) dy.

o+cto—21

Therefore, for (g, ) in the region shown, our solution is given by

. to) = loleo + cto = 20) = ofeto )] = o= [ vty dy.

2C o+cto—21

Moreover, the domain of dependence of the solution is given by the region shown.
Remarks.

e This technique can also be used to study the inhomogeneous wave equation on an
interval with Dirichlet boundary conditions by extending the source function to be
odd with respect to x = 0 and x = [, or using Duhamel’s principle. We remark that
the domain of dependence for the inhomogeneous problem will be the same as the
domain of dependence for the corresponding homogeneous problem.
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e While this reflection technique allows one to get an explicit formula for the solution
u of the wave equation on a finite interval at a specific point (zg, o), it is somewhat
tedious. In the next section, we introduce the separation of variables technique which
allows you to represent solutions in terms of infinite series. While having the drawback
of providing you only with a series solution, it is easier and more versatile than the
reflection technique described here and consequently, used much more often.
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