
8 Hyperbolic Systems of First-Order Equations

Ref: Evans, Sec. 7.3

8.1 Definitions and Examples

Let U : Rn × (0,∞) → R
m. Let Ai(x, t) be an m × m matrix for i = 1, . . . , n. Let

F : Rn × (0,∞)→ Rm. Consider the system

Ut +
n∑
i=1

Ai(x, t)Uxi = F (x, t). (8.1)

Fix ξ ∈ Rn. Let

A(x, t; ξ) ≡
n∑
i=1

Ai(x, t)ξi.

The system (8.1) is hyperbolic if A(x, t; ξ) is diagonalizable for all x, ξ ∈ Rn, t > 0. In
particular, a system is hyperbolic if for all x, ξ ∈ Rn, t > 0 the matrix A(x, t; ξ) has m real
eigenvalues

λ1(x, t; ξ) ≤ λ2(x, t; ξ) ≤ . . . ≤ λm(x, t; ξ)
corresponding to eigenvectors {ri(x, t; ξ)}mi=1 which form a basis for Rm.
There are two special cases of hyperbolicity which we now define.

1. If Ai(x, t) is symmetric for i = 1, . . . , n, then A(x, t; ξ) is symmetric for all ξ ∈ Rn.
Recall that if the m × m matrix A(x, t; ξ) is symmetric, then it is diagonalizable.
For the case when the matrices Ai(x, t) are all symmetric, we say the system (8.1) is
symmetric hyperbolic.

2. If A(x, t; ξ) has m real, distinct eigenvalues

λ1(x, t; ξ) < λ2(x, t; ξ) < . . . < λm(x, t; ξ)

for all x, ξ ∈ Rn, t > 0, then A(x, t; ξ) is diagonalizable. In this case, we say the system
(8.1) is strictly hyperbolic.

Example 1. The system [
u1
u2

]
t

+

[
1 2
3 4

] [
u1
u2

]
x

=

[
0
0

]
.

is strictly hyperbolic. �
Example 2. The system [

u1
u2

]
t

+

[
1 2
2 3

] [
u1
u2

]
x

=

[
f1(x, t)
f2(x, t)

]

is symmetric hyperbolic. �
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Motivation. Recall that all linear, constant-coefficient second-order hyperbolic equations
can be written as

utt −∆u+ . . . = 0
through a change of variables, where “. . . ” represents lower-order terms. One of the distin-
guishing features of the wave equation is that it has “wave-like” solutions. In particular, for
the wave equation

utt − c2uxx = 0
the general solution is given by

u(x, t) = f(x+ ct) + g(x− ct),
the sum of a wave moving to the right and a wave moving to the left. The functions f(x+ct)
and g(x− ct) are known as travelling waves. More generally, for the wave equation in Rn,

utt − c2∆u = 0 x ∈ Rn, (8.2)

for any (smooth) function f and any ξ ∈ Rn, u(x, t) = f(ξ · x− σt) is a solution of (8.2) for
σ = ±c|ξ|. A solution of the form f(ξ · x− σt) is known as a plane wave solution.
Motivated by the existence of plane wave solutions for the wave equation, we look for

properties of the system (8.1) such that the equation will have plane wave solutions. The
conditions under which plane wave solutions exist lead us to the definition of hyperbolicity
given above.
First, we rewrite the wave equation as a system in the form of (8.1). First, consider the

wave equation in one spatial dimension,

utt − uxx = 0.
Let

U ≡
[
ux
ut

]
.

Then

Ut =

[
uxt
utt

]
=

[
utx
uxx

]
=

[
0 1
1 0

] [
ux
ut

]
x

= A1Ux

where

A1 ≡
[
0 1
1 0

]
.

In general, for x ∈ Rn, consider
utt −∆u = 0.
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Let

U =



ux1
...
uxn
ut


 .

Then

Ut =



ux1t
...
uxnt
utt


 =



utx1
...
utxn∑n
i=1 uxixi


 =



ut
0
...
0
ux1



x1

+




0
ut
...
0
ux2



x2

+ . . .+




0
...
0
ut
uxn



xn

=



0 · · · 0 1
...
. . . 0

0
. . . 0

1 0 · · · 0





ux1
...
uxn
ut



x1

+ . . .+



0 · · · · · · 0
...
. . .

...
...

. . . 1
0 · · · 1 0





ux1
...
uxn
ut



xn

=

n∑
i=1

AiUxi

where each Ai is an (n+ 1)× (n+ 1) symmetric matrix whose entries aijk are given by

aijk =

{
1 j = i, k = n+ 1; j = n+ 1, k = i
0 otherwise.

Now we claim that for Ai as defined above, for each ξ ∈ Rn, there are m = n+1 distinct
plane wave solutions U(x, t) = V (ξ · x− σt) of

Ut −
n∑
i=1

AiUxi = 0.

In particular, define

A(ξ) =

n∑
i=1

Aiξi.

Let λi(ξ), Ri(ξ) be the ith eigenvalue and corresponding eigenvector of −A(ξ). Let U(x, t) =
f(ξ · x− λi(ξ)t)Ri(ξ). Now

Ut = λi(ξ)f
′(ξ · x− λi(ξ)t)Ri(ξ)

and

Uxi = ξif
′(ξ · x− λi(ξ)t)Ri(ξ).
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Therefore,

Ut −
n∑
i=1

AiUxi = f
′(ξ · x− λi(ξ)t)

[
λi(ξ)Ri(ξ)−

n∑
i=1

AiξiRi(ξ)

]

= f ′(ξ · x− λi(ξ)t) [λi(ξ)Ri(ξ)−A(ξ)Ri(ξ)] = 0
because

−A(ξ)Ri(ξ) = λi(ξ)Ri(ξ).
Now notice that Ai is a symmetric matrix for i = 1, . . . , n. Therefore, A(ξ) =

∑n
i=1Aiξi

is an m × m symmetric matrix for each ξ ∈ Rn. Consequently, A(ξ) has m real eigenval-
ues and m linearly independent eigenvectors Ri(ξ). Therefore, for each ξ ∈ Rn and each
eigenvalue/eigenvector pair λi(ξ), Ri(ξ), we get a distinct plane wave solution U(x, t) =
V (ξ · x− λi(ξ)t).
We use this fact to define hyperbolicity for systems of the form (8.1). In particular, we

want to find a condition on the system (8.1) under which there will be m distinct plane wave
solutions for each ξ ∈ Rn. We look for a solution of (8.1) of the form U(x, t) = V (ξ ·x−σt).
Plugging a function U of this form into (8.1) with F (x, t) ≡ 0, we see this implies

−σV ′ +
n∑
i=1

ξiAiV
′ = 0. (8.3)

Now if
∑n
i=1 ξiAi is an m × m diagonalizable matrix, then (8.3) will have m solutions

V ′1 , . . . , V
′
m. These solutions are the eigenvectors of

∑n
i=1 ξiAi which correspond to the m

eigenvalues σ1, . . . , σm. As a result, if
∑n
i=1 ξiAi is diagonalizable, then we have m plane

wave solutions of (8.1). This criteria gives us our definition for hyperbolicity described above.

8.2 Solving Hyperbolic Systems.

In this section, we will solve hyperbolic systems of the form

Ut + AUx = F (x, t) (8.4)

where A is a constant-coefficient matrix. Note that if (8.4) is hyperbolic, then A must be a
diagonalizable matrix. Therefore, there exists an m×m invertible matrix Q and an m×m
diagonal matrix Λ such that

Q−1AQ = Λ.

In particular, Λ is the diagonal matrix of eigenvalues and Q is the matrix of eigenvectors.
Therefore,

A = QΛQ−1.

Substituting this into (8.4), our system becomes

Ut +QΛQ
−1Ux = F (x, t). (8.5)
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Now multiplying (8.5) by Q−1, our system becomes

Q−1Ut + ΛQ−1Ux = Q−1F (x, t).

Letting V = Q−1U , we arrive at the decoupled system,

Vt + ΛVx = Q
−1F (x, t).

Remark: If A is symmetric, the eigenvectors may be chosen to be orthonormal, in which
case Q−1 = QT .

Example 3. Find a solution to the initial-value problem


[
u1
u2

]
t

+

[
1 4
4 1

] [
u1
u2

]
x

=

[
0
0

]
[
u1(x, 0)
u2(x, 0)

]
=

[
sin x
cosx

]
.

(8.6)

Here

A =

[
1 4
4 1

]

is a symmetric matrix. Therefore, it has two real eigenvalues and its eigenvectors form an
orthonormal basis for R2. In particular, A can be diagonalized. The eigenvalue/eigenvector
pairs are given by

λ1 = 5 v1 =
1√
2

[
1
1

]

λ2 = −3 v2 =
1√
2

[
1
−1
]
.

Therefore, A = QΛQT where

Q =

[
1/
√
2 1/

√
2

1/
√
2 −1/√2

]

QT =

[
1/
√
2 1/

√
2

1/
√
2 −1/√2

]

Λ =

[
5 0
0 −3

]
.

Our system can be rewritten as

QT
[
u1
u2

]
t

+ ΛQT
[
u1
u2

]
x

=

[
0
0

]
.
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Letting V = QTU our system becomes[
v1
v2

]
t

+ Λ

[
v1
v2

]
x

=

[
0
0

]
[
v1(x, 0)
v2(x, 0)

]
= QT

[
u1(x, 0)
u2(x, 0)

]
.

That is, we have two separate transport equations,

v1t + 5v1x = 0

v1(x, 0) =
1√
2
(sin x+ cosx).

and 

v2t − 3v2x = 0
v2(x, 0) =

1√
2
(sin x− cosx).

Our solutions are given by

v1(x, t) =
1√
2
(sin(x− 5t) + cos(x− 5t))

v2(x, t) =
1√
2
(sin(x+ 3t)− cos(x+ 3t)).

Now V = QTU implies U = QV . Therefore, our solution is given by

U(x, t) =
1

2

[
sin(x− 5t) + cos(x− 5t) + sin(x+ 3t) + cos(x+ 3t)
sin(x− 5t) + cos(x− 5t)− sin(x+ 3t)− cos(x+ 3t)

]
.

�
Remark. Notice in the above example that the value of the solution U at the point (x0, t0)
depends only on the values of the initial conditions at the points x0 − 5t0 and x0 + 3t0. In
the next section, we prove that for a symmetric hyperbolic system of the form

Ut +

n∑
i=1

AiUxi = 0

that the domain of dependence for a solution at the point (x0, t0) is contained within the
region

{(x, t) : |x− x0| ≤M(t0 − t)}
where M is an upper bound on the eigenvalues of A(ξ) =

∑n
i=1Aiξi over all ξ ∈ Rn such

that |ξ| = 1; that is,
M ≡ max

i=1,... ,m
|ξ|=1

|λi(ξ)|,

where λi(ξ) are the m eigenvalues of A(ξ).
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8.3 Domain of Dependence for a Symmetric Hyperbolic System.

In the above example, we saw that the domain of dependence for a solution U at the point
(x0, t0) is contained within the triangular region {(x, t) : x0+5(t−t0) ≤ x ≤ x0−3(t−t0), 0 ≤
t ≤ t0}. More generally, for any symmetric hyperbolic system of the form

Ut + AUx = F (x, t) x ∈ R,
the domain of dependence is contained within the region {(x, t) : x0 +M(t − t0) ≤ x ≤
x0 −M(t− t0), 0 ≤ t ≤ t0} where

M = max
i
|λi|

where λi are the m eigenvalues of A.
This idea extends to systems in higher dimensions in well. Consider the symmetric

hyperbolic system,

Ut +
n∑
i=1

AiUxi = 0 x ∈ Rn

where each Ai is an m×m symmetric matrix. Let

A(ξ) =
n∑
i=1

ξiAi.

Let λi(ξ), i = 1, . . . , m be the m eigenvalues of A(ξ). Let

M = max
i=1,... ,m
|ξ|=1

|λi(ξ)|.

We claim that M is the upper bound on the speed of waves in any direction. We state this
more precisely in the following theorem.
First, we make some definitions. Let (x0, t0) ∈ Rn × (0,∞). Let 0 ≤ t1 ≤ t0. Let

B ≡ {x ∈ Rn : |x− x0| ≤Mt0}
C ≡ {x ∈ Rn : |x− x0| ≤M(t0 − t1)}
S ≡ {(x, t) : 0 ≤ t ≤ t1, |x− x0| =M |t0 − t|}.

Theorem 4. Let (x0, t0) ∈ Rn × (0,∞). Let B,C be as defined above. Assume U is a
solution of

Ut +
n∑
i=1

AiUxi = 0 (8.7)

where each Ai is an m ×m constant-coefficient, symmetric matrix. If |U | ≡ 0 on B, then
|U | ≡ 0 on C.
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Proof. Let Ω be the region bounded by B,C and S. Let ∂Ω = B ∪ C ∪ S.
Multiplying (8.7) by UT and integrating over Ω, we have

∫
Ω

UT (Ut +
n∑
i=1

AiUxi) dx dt = 0.

First, we note that

UTUt =
1

2
∂t|U |2.

Second, we have

UT
n∑
i=1

AiUxi =
1

2

n∑
i=1

(U · AiU)xi ,

using the fact that each Ai is symmetric. Then, by the divergence theorem, we have∫
Ω

1

2
∂t|U |2 dx dt = 1

2

∫
∂Ω

|U |2νt dS

where ν = (ν1, . . . , νn, νt) is the outward unit normal on ∂Ω. Now

1

2

∫
∂Ω

|U |2νt dS = 1
2

∫
C

|U |2 dx− 1
2

∫
B

|U |2 dx+ 1
2

∫
S

|U |2νt dS.

On S,

ν =
(x1 − x01, . . . , xn − x0n,M2(t− t0))

(t0 − t)M
√
1 +M2

.

Therefore,

νt =
M√
1 +M2

.

Therefore,

1

2

∫
∂Ω

|U |2νt dS = 1
2

∫
C

|U |2 dx− 1
2

∫
B

|U |2 dx+ 1
2

∫
S

|U |2 M√
1 +M2

dS.

Similarly, we use the divergence theorem on our other term,

∫
Ω

1

2

n∑
i=1

(U ·AiU)xi dx dt =
1

2

∫
S

n∑
i=1

(U ·AiU)νi dS

=
1

2

∫
S

n∑
i=1

(U ·AiU) (xi − x0i)
(t0 − t)M

√
1 +M2

dS.

8



Let

ξi =
(xi − x0i)
(t0 − t)M .

Then, we have |ξ| = 1. And, therefore,∫
Ω

1

2

n∑
i=1

(U · AiU)xi dx dt =
1

2
√
1 +M2

∫
S

n∑
i=1

(U · AiξiU) dS

=
1

2
√
1 +M2

∫
S

(U · A(ξ)U) dS.

Therefore, we have

0 =

∫
Ω

UT (Ut +

n∑
i=1

AiUxi) dx dt

=
1

2

∫
C

|U |2 dx− 1
2

∫
B

|U |2 dx+ 1
2

∫
S

|U |2 M√
1 +M2

dS +
1

2
√
1 +M2

∫
S

(U · A(ξ)U) dS.

But,

|U |2M + U · A(ξ)U = U · (MI + A(ξ))U
≥ 0,

as the eigenvalues of A(ξ) ≤M .
Therefore,

1

2

∫
C

|U |2 dx ≤ 1
2

∫
B

|U |2 dx.

Therefore, if |U | ≡ 0 on B, then |U | ≡ 0 on C.

Now we prove uniqueness of solutions to symmetric hyperbolic systems.

Theorem 5. (Uniqueness) Consider the symmetric hyperbolic system,

Ut +

n∑
i=1

AiUxi = F (x, t) x ∈ Rn

U(x, 0) = Φ(x)

where the initial data Φ(x) has compact support. Then there exists at most one (smooth)
solution.

Proof. Suppose there are two smooth solutions U1 and U2 with the same initial data Φ. Let
W (x, t) = U1(x, t)−U2(x, t). We know thatW (x, 0) = 0. We claim thatW (x, t) ≡ 0. Define
the energy function,

E(t) ≡ 1
2

∫
Rn

|W |2 dx.
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We know E(0) = 0. We claim E(t) = 0, and, therefore, W (x, t) ≡ 0. We will show that
E(t) = 0 by showing that E ′(t) = 0.

E ′(t) =
∫
Rn

W ·Wt dx

= −
∫
Rn

W ·
n∑
i=1

AiWxi

= −1
2

∫
Rn

n∑
i=1

(W · AiW )xi dx

= 0

using the fact that Φ has compact support implies W has compact support. (By the domain
of dependence results we showed above.) Therefore, E ′(t) = 0, which implies for E(0) = 0,
then E(t) = 0 for any time t. Therefore, |W | ≡ 0 which implies U1 ≡ U2 (assuming U1, U2
are smooth).
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