
4 Classification of Second-Order Equations

4.1 Types of Second-Order Equations

We now turn our attention to second-order equations

F (~x, u, Du, D2u) = 0.

In general, higher-order equations are more complicated to solve than first-order equations.
Consequently, we will only be studying linear equations. First, let’s consider a second-order
equation of only two independent variables. We will then discuss second-order equations in
higher dimensions. Consider a linear, second-order equation of the form

auxx + buxy + cuyy + dux + euy + fu = 0 (4.1)

In studying second-order equations, it has been shown that solutions of equations of the
form (4.1) have different properties depending on the coefficients of the highest-order terms,
a,b,c. We will classify these equations into three different categories. If b2 − 4ac > 0, we
say the equation is hyperbolic. If b2 − 4ac = 0, we say the equation is parabolic. If
b2 − 4ac < 0, we say the equation is elliptic.

Example 1.

• The wave equation
utt − uxx = 0 is hyperbolic.

• The Laplace equation
uxx + uyy = 0 is elliptic.

• The heat equation
ut − uxx = 0 is parabolic.

¦

4.2 Canonical Form.

The three equations in Example 1 above are of particular interest not only because they are
derived from physical principles, but also because every second-order linear equation of the
form (4.1) can be reduced to an equation of one of those forms (plus lower-order terms) by
making a change of variables.

Theorem 2. (Ref: Strauss, Sec. 1.6) By a linear transformation of the independent vari-
ables, any equation of the form

auxx + buxy + cuyy + dux + euy + fu = 0

can be reduced to one of the following forms.
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1. Elliptic case: If b2 − 4ac < 0, the equation is reducible to

uxx + uyy + . . . = 0.

2. Hyperbolic case: If b2 − 4ac > 0, the equation is reducible to

uxx − uyy + . . . = 0.

3. Parabolic case: If b2 − 4ac = 0, the equation is reducible to

uxx + . . . = 0,

where . . . represent lower-order terms.

Proof. Consider the hyperbolic case. Without loss of generality, we may assume a = 1,
d = e = f = 0. By completing the square, we can write the equation as

(
∂x +

b

2
∂y

)2

u−
((

b

2

)2

− c

)
∂2

yu = 0.

Now if we introduce new variables ξ, η such that

∂ξ = ∂x +
b

2
∂y

∂η =
√

(b/2)2 − c∂y

(4.2)

then our equation will become
uξξ − uηη = 0,

which is a hyperbolic equation of the form described. Now we first note that by the assump-
tion that b2 − 4ac > 0 and a = 1, (b/2)2 − c > 0 so

√
(b/2)2 − c is defined.

To make this change of variables, we introduce variables ξ, η such that

xξ = 1 xη = 0

yξ =
b

2
yη =

√
(b/2)2 − c.

That is,

x = ξ

y = (b/2)ξ + (
√

(b/2)2 − c)η

which implies

ξ = x

η = [(b/2)2 − c]−1/2[−(b/2)x + y].
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With this change of variables, the operators ∂ξ, and ∂η will satisfy (4.2), and our equation
will take the form

uξξ − uηη = 0,

as desired.
If a = 0 above, our equation has the form

buxy + cuyy = 0.

The assumption that b2 − 4ac > 0 implies b 6= 0 (if a = 0). This equation can be written as

∂y[b∂x + c∂y]u = 0.

Introduce variables ξ and η such that

∂ξ = b∂x + c∂y

∂η = ∂y.

That is, letting

xξ = b xη = 0

yξ = c yη = 1

which implies

x = bξ

y = cξ + η

or

ξ = (1/b)x

η = −(c/b)x + y,

our equation becomes
uξη = 0. (4.3)

We note that an equation of the form (4.3) is sometimes also known as the canonical form
for hyperbolic equations in two spatial dimensions. In particular, any equation of the form
(4.3) can easily be transformed to the standard form by introducing variables ξ̃, η̃ such that

∂ξ = ∂eξ + ∂eη
∂η = ∂eξ − ∂eη.

That is,

ξ̃ξ = 1 ξ̃η = 1

η̃ξ = 1 η̃η = −1
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which implies

ξ̃ = ξ + η

η̃ = ξ − η.

As a result our equation takes on the form

(∂eξ + ∂eη)(∂eξ − ∂eη)u = 0,

or
ueξeξ − ueηeη = 0,

as desired.
The elliptic and parabolic cases can be proven similarly.

4.3 Generalizing to Higher Dimensions

We now generalize the definitions of ellipticity, hyperbolicity, and parabolicity to second-
order equations in n dimensions. Consider the second-order equation

n∑
i,j=1

aijuxixj
+

n∑
i=1

aiuxi
+ a0u = 0. (4.4)

Assuming that the mixed partial derivatives are equal, we may as well assume that aij = aji.
For example, the equation

uxx + 2uxy − 3uyz + 5uzz = 0

can be written as

uxx + uxy + uyx − (3/2)uyz − (3/2)uzy + 5uzz = 0.

Claim 3. By making an appropriate change of variables, we can write the top-order term

n∑
i,j=1

aijuxixj
(4.5)

as
n∑

k=1

dkuxkxk

where the coefficients dk are the eigenvalues of the n × n matrix A = (aij). Moreover, by
making a change of scale, we can choose the coefficients di = 0,±1 for i = 1, . . . , n.

Proof. Let ~x = [x1 . . . xn]T . Below, we will find an appropriate n× n matrix B such that by
defining

~ξ = B~x,
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we can write (4.5) in the form

d1uξ1ξ1 + d2uξ2ξ2 + . . . + dnuξnξn

where di = 0,±1.
Letting

~ξ = B~x,

we have

ξk =
n∑

m=1

bkmxm,

and, therefore,

∂

∂xi

=
n∑

k=1

∂ξk

∂xi

∂

∂ξk

=
n∑

k=1

bki
∂

∂ξk

.

Consequently,

uxixj
=

(
n∑

l=1

blj
∂

∂ξl

)(
n∑

k=1

bki
∂

∂ξk

)
u

=
∑

l,k

∂2

∂ξl∂ξk

bljbkiu

=
∑

l,k

bljbkiuξlξk
.

Therefore,

∑
i,j

aijuxixj
=

∑
i,j

(∑

l,k

bljaijbkiuξlξk

)

=
∑

l,k

(∑
i,j

bljaijbki

)
uξlξk

.

Now, letting

dkl ≡
∑
i,j

bljaijbki,

we have ∑
i,j

aijuxixj
=

∑

l,k

dkluξlξk
.

We claim that for an appropriate choice of B, we can make

dkl =

{
±1 k = l

0 k 6= l.
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Let A = (aij), the coefficient matrix associated with (4.5). By the assumption that aij = aji,
we know that A is a symmetric matrix. Let (C)lk denote the entry in row l, column k of the
matrix C. Therefore, we have

dkl =
n∑

i,j=1

bljaijbki

=
n∑

j=1

blj

(
n∑

i=1

aijbki

)

=
n∑

j=1

blj

(
n∑

i=1

ajibki

)

=
n∑

j=1

blj(ABT )jk

= (BABT )lk

= ((BABT )T )kl

= (BAT BT )kl

= (BABT )kl.

So, if we can choose B such that BABT is diagonal, then we would have dkl = 0 for l 6= k.
Again, using the assumption that A is symmetric, we know there exists an orthogonal matrix
S such that ST AS = D where D is a diagonal matrix whose diagonal entries are just the
eigenvalues of A. (S is the matrix whose columns form an orthonormal eigenbasis for A.)
Letting B = ST , we have dkl = 0 for k 6= l. Therefore, by making the change of variables
~ξ = B~x, we can write our top-order term (4.5) as

n∑

k=1

dkuξkξk
,

where the dk are the eigenvalues of A. In order to make the coefficients dk = ±1, we just
need to make a change of scale in our variables ξk, i.e. - let ξ̃k = (1/

√
|dk|)ξk.

In the above claim, we have shown that every linear, second-order equation of the form
(4.4) can be written in the canonical form

n∑

k=1

dkuxkxk
+ . . . = 0,

where the coefficients dk are the eigenvalues of A and ′′ . . .′′ represents lower-order terms.
Moreover, by a change of variables, we may choose the dk = 0,±1.

Extending the definitions we gave previously for second-order equations in two spatial
variables, we say an equation of the form (4.4) is elliptic if the eigenvalues of A = (aij) are

6



all positive or all negative. In particular, by the above claim, elliptic equations can all be
written in the canonical form

n∑
i=1

uxixi
+ . . . = 0.

We say an equation of the form (4.4) is hyperbolic if none of the eigenvalues are zero and
one of them has the opposite sign of the (n− 1) others. By the above claim, all hyperbolic
equations can be written in the canonical form,

ux1x1 −
n∑

i=2

uxixi
+ . . . = 0.

We say an equation of the form (4.4) is parabolic if exactly one of the eigenvalues is
zero and all the others have the same sign. By the above claim, all parabolic equations can
be written in the canonical form,

n∑
i=2

uxixi
+ . . . = 0.
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