Math 220A
 Practice Midterm Solutions - Fall 2002

1. Classify the following in terms of degree of nonlinearity:
(a) $u_{t}+e^{u} u_{x}=x^{2}$ Answer: quasilinear
(b) $u_{t}+x^{2} u_{x}=e^{u}$ Answer: semilinear
(c) $x^{3} u_{t}+u_{x}^{2}=1$ Answer: fully nonlinear
(d) $u_{t}+x^{3} u_{x}=\sin \left(x^{2}\right)$ Answer: linear
(e) $u_{x t}+\left[\frac{u^{2}}{2}\right]_{x}=\cos \left(u_{x}\right)$ Answer: semilinear
2. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}2 & x<0 \\ 1 & 0<x<1 \\ 0 & x>1\end{cases}
$$

which satisfies the entropy condition.
Answer: The characteristic ODE are given by

$$
\begin{cases}\frac{d t}{d s}=1 & t(r, 0)=0 \\ \frac{d x}{d s}=z & x(r, 0)=r \\ \frac{d z}{d s}=0 & z(r, 0)=\phi(r)\end{cases}
$$

which implies the projected characteristics are given by $x=\phi(r) t+r$. For $r<0$, our projected characteristics are given by $x=2 t+r$. For $0<r<1$, our projected characteristics are given by $x=t+r$. For $r>1$, our projected characteristics are given by $x=r$.

Therefore, we need to put in two shock curves.
First, between $u^{-}=2$ and $u^{+}=1$, our shock curve $x=\xi_{1}(t)$ needs to satisfy

$$
\xi_{1}^{\prime}(t)=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{u^{-}-u^{+}}=\frac{\frac{2^{2}}{2}-\frac{1^{2}}{2}}{2-1}=\frac{3}{2} .
$$

In addition, this curve needs to pass through the point $(0,0)$. Therefore, $\xi_{1}(t)=\frac{3}{2} t$. Second, between $u^{-}=1$ and $u^{+}=0$, we need the shock curve $x=\xi_{2}(t)$ to satisfy

$$
\xi_{2}^{\prime}(t)=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{u^{-}-u^{+}}=\frac{\frac{1^{2}}{2}-\frac{0^{2}}{2}}{1-0}=\frac{1}{2} .
$$

In addition, this curve needs to pass through the point $(1,0)$. Therefore, $\xi_{2}(t)=\frac{1}{2} t+1$. Therefore, our solution is given by

$$
u(x, t)= \begin{cases}2 & x<\frac{3}{2} t \\ 1 & \frac{3}{2} t<x<\frac{1}{2} t+1 \\ 0 & x>\frac{1}{2} t+1\end{cases}
$$

However, at $t=1$, the two shock curves intersect. Therefore, the above solution is only valid for $0 \leq t \leq 1$. Consequently, we need to define a new shock curve $x=\xi_{3}(t)$
starting from the point $(3 / 2,1)$ which satisfies the Rankine-Hugoniot jump condition where $u^{-}=2$ and $u^{+}=0$. That is,

$$
\xi_{3}^{\prime}(t)=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{u^{-}-u^{+}}=\frac{\frac{2^{2}}{2}-\frac{0^{2}}{2}}{2-0}=1
$$

Therefore, $\xi_{3}(t)=t+\frac{1}{2}$.
In summary, for $0 \leq t \leq 1$ our solution is given by

$$
u(x, t)= \begin{cases}2 & x<\frac{3}{2} t \\ 1 & \frac{3}{2} t<x<\frac{1}{2} t+1 \\ 0 & x>\frac{1}{2} t+1\end{cases}
$$

While for $t \geq 1$, our solution is given by

$$
u(x, t)= \begin{cases}2 & x<t+\frac{1}{2} \\ 0 & x>t+\frac{1}{2}\end{cases}
$$

3. Solve

$$
\left\{\begin{array}{l}
u_{t}+u_{x}^{2}=0 \\
u(x, 0)=-x^{2}
\end{array}\right.
$$

Find the time T for which $|u| \rightarrow+\infty$ as $t \rightarrow T$.
Answer: Writing our equation as $F(x, t, z, p, q)=p^{2}+q$, our characteristic ODE are
given by

$$
\begin{cases}\frac{d x}{d s}=2 p & x(r, 0)=r \\ \frac{d t}{d s}=1 & t(r, 0)=0 \\ \frac{d z}{d s}=p^{2} & z(r, 0)=-r^{2} \\ \frac{d p}{d s}=0 & p(r, 0)=-2 r \\ \frac{d q}{d s}=0 & q(r, 0)=-4 r^{2}\end{cases}
$$

Note the initial conditions for p and q, denoted $p(r, 0)=\psi_{1}(r)$ and $q(r, 0)=\psi_{2}(r)$ come from the two equations

$$
\begin{aligned}
& \psi_{1}^{2}+\psi_{2}=0 \\
& \phi^{\prime}=\psi_{1} \gamma_{1}^{\prime}+\psi_{2} \gamma_{2}^{\prime}
\end{aligned}
$$

Now solving this system of ODEs, we have

$$
\left\{\begin{array}{l}
x=-4 r s+r \\
t=s \\
z=4 r^{2} s-r^{2} \\
p=-2 r \\
q=-4 r^{2}
\end{array}\right.
$$

Solving for r and s in terms of x and t, we have

$$
u(x, t)=4\left(\frac{x}{1-4 t}\right)^{2} t-\left(\frac{x}{1-4 t}\right)^{2}
$$

The solution is finite up until $T=1 / 4$.
4. Solve

$$
\left\{\begin{array}{l}
u_{x}+x u_{y}-4 u=0 \\
u(1, y)=y^{2}
\end{array}\right.
$$

Answer: Our characteristic ODE are given by

$$
\begin{cases}\frac{d x}{d s}=1 & x(r, 0)=1 \\ \frac{d y}{d s}=x & y(r, 0)=r \\ \frac{d z}{d s}=4 z & z(r, 0)=r^{2}\end{cases}
$$

Solving the characteristic ODE, we have

$$
\left\{\begin{array}{l}
x=s+1 \\
y=s^{2} / 2+s+r \\
z=r^{2} e^{4 s}
\end{array}\right.
$$

Solving for r and s in terms of x and y, we see our solution is given by

$$
u(x, y)=\left[y-\frac{(x-1)^{2}}{2}-(x-1)\right]^{2} e^{4(x-1)}
$$

5. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+u^{2} u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}0 & x<0 \\ 1 & 0<x<2 \\ 0 & x>2\end{cases}
$$

which satisfies the Oleinik entropy condition.
Answer: As in problem 2, the projected characteristics are given by $x=\phi(r) t+r$. For $r<0, \phi(r)=0$ implies the proj. chars. are given by $x=r$ for $r<0$. For $0<r<2, \phi(r)=1$ implies the proj. chars. are given by $x=t+r$ for $0<r<2$. For $r>1, \phi(r)=1$ implies the proj. chars. are given by $x=r$ for $r>2$.

We put in a rarefaction wave in the open wedge and introduce a shock curve where the projected characteristics cross. The rarefaction wave is given by $G(x / t)=\left(f^{\prime}\right)^{-1}(x / t)=$ $\sqrt{x / t}$. The shock curve $x=\xi_{1}(t)$ must satisfy the R-H jump condition,

$$
\xi_{1}^{\prime}(t)=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{u^{-}-u^{+}}=\frac{\frac{1^{3}}{3}-\frac{0^{3}}{3}}{1-0}=\frac{1}{3} .
$$

Notice that the Oleinik entropy condition is satisfied because the chord connecting $\left(u^{-}, f\left(u^{-}\right)\right)=(1,1 / 3)$ and $\left(u^{+}, f\left(u^{+}\right)\right)=(0,0)$ lies above the graph of the function f.

Combining the rarefaction wave and shock curve defined above, we see our solution is given by

$$
u(x, t)=\left\{\begin{array}{rl}
0 & x<0 \\
\sqrt{\frac{x}{t}} & 0<x<t \\
1 & t<x<\frac{1}{3} t+2 \\
0 & x>\frac{1}{3} t+2
\end{array}\right.
$$

Now at $t=3$, the rarefaction wave hits the shock curve. Therefore, we need to introduce a new shock curve. The new shock curve $x=\xi_{2}^{\prime}(t)$ must satisfy

$$
\xi_{2}^{\prime}(t)=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{u^{-}-u^{+}}=\frac{\frac{1}{3}\left(\sqrt{\frac{x}{t}}\right)^{3}-\frac{0^{3}}{3}}{\sqrt{\frac{x}{t}}-0}=\frac{x}{3 t} .
$$

In addition, this curve must pass through the point $(x, t)=(3,3)$. Therefore, this curve is given by $x=(9 t)^{1 / 3}$. Again, notice that the Oleinik entropy condition is satisfied along this shock curve.
In summary, our solution is given as follows. For $0 \leq t \leq 3$,

$$
u(x, t)=\left\{\begin{array}{rl}
0 & x<0 \\
\sqrt{\frac{x}{t}} & 0<x<t \\
1 & t<x<\frac{1}{3} t+2 \\
0 & x>\frac{1}{3} t+2
\end{array}\right.
$$

While for $t \geq 3$, our solution is given by

$$
u(x, t)=\left\{\begin{array}{rl}
0 & x<0 \\
\sqrt{\frac{x}{t}} & 0<x<(9 t)^{1 / 3} \\
0 & x>(9 t)^{1 / 3}
\end{array}\right.
$$

6. Let f, g be C^{∞} functions. Consider the initial value problem

$$
\left\{\begin{array}{l}
{[g(u)]_{t}+[f(u)]_{x}=0} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

(a) Give a definition for a strong solution of this initial value problem.

Answer: We say u is a strong solution of the initial-value problem above if u is a continuously differentiable function which satisfies the equation $[g(u)]_{t}+[f(u)]_{x}=$ 0 at each point (x, t) and $u(x, 0)=\phi(x)$.
(b) Give a definition for a weak solution of this initial value problem.

Answer: We say u is a weak solution of the initial-value problem above if u satisfies

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t+\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x=0
$$

for all smooth functions v with compact support.
(c) Prove that any strong solution is in fact a weak solution.

Answer: If u is strong, then

$$
[g(u)]_{t}+[f(u)]_{x}=0 .
$$

Now multiplying this equation by a smooth function v with compact support and integrating over $\mathbb{R} \times[0, \infty)$, we have

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left\{[g(u)]_{t}+[f(u)]_{x}\right\} v d x d t=0
$$

Integrating by parts, we have

$$
\begin{aligned}
-\int_{0}^{\infty} \int_{-\infty}^{\infty} g(u) v_{t} d x d t & +\left.\int_{-\infty}^{\infty} g(u) v d x\right|_{t=0} ^{t=\infty} \\
& -\int_{0}^{\infty} \int_{-\infty}^{\infty} f(u) v_{x} d x d t+\left.\int_{0}^{\infty} f(u) v d t\right|_{x=-\infty} ^{x=\infty}=0
\end{aligned}
$$

Using the fact that v has compact support, three of the boundary terms vanish. Therefore, we are left with

$$
-\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t-\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x=0
$$

as desired.
7. (a) Find the general solution of

$$
u_{t t}+2 u_{x t}-3 u_{x x}=0
$$

Answer: We rewrite our equation as

$$
\left(\partial_{t}+3 \partial_{x}\right)\left(\partial_{t}-\partial_{x}\right) u=0
$$

Then we introduce new variables ξ, η such that

$$
\begin{aligned}
& \partial_{\xi}=\partial_{t}+3 \partial_{x} \\
& \partial_{\eta}=\partial_{t}-\partial_{x} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\xi & =\frac{1}{4}(x+t) \\
\eta & =-\frac{1}{4}(x-3 t)
\end{aligned}
$$

With this change of variables, we have

$$
u_{\xi \eta}=0 .
$$

Therefore, the general solution is given by

$$
u(x, t)=f(x+t)+g(x-3 t)
$$

(b) Find the solution of the initial-value problem,

$$
\left\{\begin{array}{l}
u_{t t}+2 u_{x t}-3 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

Answer: Our general solution is given by

$$
u(x, t)=f(x+t)+g(x-3 t)
$$

We want

$$
\begin{aligned}
u(x, 0) & =f(x)+g(x)=\phi(x) \\
u_{t}(x, 0) & =f^{\prime}(x)-3 g^{\prime}(x)=\psi(x)
\end{aligned}
$$

Solving these equations for f and g, we arrive at the following solution for our initial-value problem,

$$
u(x, t)=\frac{3}{4} \phi(x+t)+\frac{1}{4} \phi(x-3 t)+\frac{1}{4} \int_{x-3 t}^{x+t} \psi(y) d y .
$$

