Math 220A - Second Practice Midterm Exam Solutions - Fall 2002

1. Classify the following in terms of degree of nonlinearity:
(a) $u_{t}^{2}+x^{2} u_{x t}=\sin (u)$ Answer: semilinear
(b) $u_{x}+\left[u^{3}\right]_{y}=x^{2}+y^{2}$ Answer: quasilinear
(c) $\left[e^{u}\right]_{x}+u^{2} u_{y}=0$ Answer: quasilinear
(d) $\left[x^{3} u\right]_{x}+y^{3} u=\sin \left(x^{2}+y^{2}\right)$ Answer: linear
(e) $\left[u_{x}^{3}\right]_{t}+e^{u_{x t}}=0$ Answer: fully nonlinear
2. Solve

$$
\left\{\begin{array}{l}
u_{t}+u_{x}^{2}=t \\
u(x, 0)=x
\end{array}\right.
$$

Answer: Let $F(x, t, z, p, q)=q+p^{2}-t$. Our characteristic equations are given by

$$
\begin{aligned}
& \frac{d x}{d s}=F_{p}=2 p \\
& \frac{d t}{d s}=F_{q}=1 \\
& \frac{d z}{d s}=p F_{p}+q F_{q}=2 p^{2}+q \\
& \frac{d p}{d s}=-F_{x}-p F_{z}=0 \\
& \frac{d q}{d s}=-F_{t}-q F_{z}=1
\end{aligned}
$$

with initial conditions

$$
\begin{aligned}
& x(r, 0)=\gamma_{1}(r)=r \\
& t(r, 0)=\gamma_{2}(r)=0 \\
& z(r, 0)=\phi(r)=r \\
& p(r, 0)=\psi_{1}(r) \\
& q(r, 0)=\psi_{2}(r)
\end{aligned}
$$

where ψ_{1}, ψ_{2} satisfy

$$
\begin{aligned}
& \phi^{\prime}(r)=\psi_{1} \gamma_{1}^{\prime}+\psi_{2} \gamma_{2}^{\prime} \\
& \psi_{2}+\psi_{1}^{2}-\gamma_{2}=0
\end{aligned}
$$

The first equation implies $\psi_{1}=1$. The second equation implies $\psi_{2}=-1$. Therefore
the solutions of our characteristic equations are given as follows,

$$
\begin{aligned}
& x(r, s)=2 s+r \\
& t(r, s)=s \\
& z(r, s)=\frac{s^{2}}{2}+s+r \\
& p(r, s)=1 \\
& q(r, s)=s-1
\end{aligned}
$$

Therefore, our solution is given by

$$
u(x, t)=z(r(x, t), s(x, t))=\frac{t^{2}}{2}+t+x-2 t
$$

or

$$
u(x, t)=\frac{t^{2}}{2}+x-t
$$

3. Solve

$$
\left\{\begin{array}{l}
u_{t t}+3 u_{x t}-10 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x)
\end{array}\right.
$$

by reducing the hyperbolic equation to two first-order transport equations. That is, reduce to the system

$$
\begin{aligned}
& \left(\partial_{t}+5 \partial_{x}\right) v=0 \\
& \left(\partial_{t}-2 \partial_{x}\right) u=v
\end{aligned}
$$

with appropriate initial conditions. Then solve these first-order equations using the method of characteristics.
Answer: We write our equation

$$
u_{t t}+3 u_{x t}-10 u_{x x}=0
$$

as

$$
\left(\partial_{t}+5 \partial_{x}\right)\left(\partial_{t}-2 \partial_{x}\right) u=0
$$

Now letting

$$
v=\left(\partial_{t}-2 \partial_{x}\right) u
$$

our equation can be written as two transport equations,

$$
\begin{aligned}
& u_{t}-2 u_{x}=v \\
& v_{t}+5 v_{x}=0 .
\end{aligned}
$$

Now using the fact that $v=u_{t}-2 u_{x}$, we see that $v(x, 0)=\psi(x)-2 \phi^{\prime}(x)$. Therefore, we must first solve the initial-value problem

$$
\begin{aligned}
& v_{t}+5 v_{x}=0 \\
& v(x, 0)=\psi(x)-2 \phi^{\prime}(x)
\end{aligned}
$$

We know solutions of the transport equation are given by

$$
v(x, t)=f(x-5 t)
$$

Combining this with our initial condition, we have

$$
v(x, t)=\psi(x-5 t)-2 \phi^{\prime}(x-5 t) .
$$

Next, we solve

$$
\begin{aligned}
& u_{t}-2 u_{x}=\psi(x-5 t)-2 \phi^{\prime}(x-5 t) \\
& u(x, 0)=\phi(x)
\end{aligned}
$$

Our characteristic ODE are given by

$$
\begin{aligned}
& \frac{d x}{d s}=-2 \\
& \frac{d t}{d s}=1 \\
& \frac{d z}{d s}=\psi(x(s)-5 t(s))-2 \phi^{\prime}(x(s)-5 t(s))
\end{aligned}
$$

subject to the initial conditions

$$
\begin{aligned}
& x(r, 0)=r \\
& t(r, 0)=0 \\
& z(r, 0)=\phi(r) .
\end{aligned}
$$

The solutions of this system of ODEs is given by

$$
\begin{aligned}
x(r, s) & =-2 s+r \\
t(r, s) & =s \\
z(r, s) & =\int_{0}^{s} \psi\left(-2 s^{\prime}+r-5 s^{\prime}\right) d s^{\prime}-2 \int_{0}^{2} \phi^{\prime}\left(-2 s^{\prime}+r-5 s^{\prime}\right) d s^{\prime}+\phi(r) \\
& =\int_{0}^{s}\left[\psi\left(-7 s^{\prime}+r\right)-2 \phi^{\prime}\left(-7 s^{\prime}+r\right)\right] d s^{\prime}+\phi(r) \\
& =-\frac{1}{7} \int_{r}^{-7 s+r}\left[\psi(y)-2 \phi^{\prime}(y)\right] d y+\phi(r)
\end{aligned}
$$

Therefore, our solution u is given by

$$
u(x, t)=z(r(x, t), s(x, t))=-\frac{1}{7} \int_{x+2 t}^{x-5 t}\left[\psi(y)-2 \phi^{\prime}(y)\right] d y+\phi(x+2 t)
$$

which implies

$$
u(x, t)=\frac{5}{7} \phi(x+2 t)+\frac{2}{7} \phi(x-5 t)+\frac{1}{7} \int_{x-5 t}^{x+2 t} \psi(y) d y .
$$

4. Find the unique, weak solution of the following which satisfies the entropy condition,

$$
\left\{\begin{array}{l}
u_{t}-(\sin (u))_{x}=0 \quad t \geq 0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

in each of the two cases below.
Answer: First, our characteristic ODEs are given by

$$
\begin{aligned}
& \frac{d t}{d s}=0 \\
& \frac{d x}{d s}=-\cos (z) \\
& \frac{d z}{d s}=0
\end{aligned}
$$

with initial conditions

$$
\begin{aligned}
& t(r, 0)=0 \\
& x(r, 0)=r \\
& z(r, 0)=\phi(r)
\end{aligned}
$$

Therefore, our projected characteristics are given by

$$
x=-\cos (\phi(r)) t+r
$$

(a)

$$
\phi(x)= \begin{cases}0 & x<0 \\ \pi & x>0\end{cases}
$$

In this case, the characteristics are given by

$$
\begin{array}{rl}
x=-t+r & r<0 \\
x=t+r & r>0 .
\end{array}
$$

Therefore, we need to fill in the open wedge with a rarefaction wave,

$$
G(x / t)=\left(f^{\prime}\right)^{-1}(x / t)=\arccos (-x / t) .
$$

Therefore, our solution is given by

$$
u(x, t)=\left\{\begin{array}{rl}
0 & x<-t \\
\arccos (-x / t) & -t<x<t \\
\pi & x>t
\end{array}\right.
$$

(b)

$$
\phi(x)= \begin{cases}\pi & x<0 \\ 0 & x>0\end{cases}
$$

In this case, the characteristics are given by

$$
\begin{array}{rl}
x=t+r & r<0 \\
x=-t+r & r>0 .
\end{array}
$$

Therefore, our projected characteristics intersect. We introduce a shock curve. This curve $x=\xi(t)$ must satisfy

$$
\xi^{\prime}(t)=\frac{[f(u)]}{[u]}=\frac{-\sin (\pi)+\sin (0)}{\pi-0}=0
$$

and pass through the origin. Therefore, the curve is $x=0$. Therefore, our solution is given by

$$
u(x, t)= \begin{cases}\pi & x<0 \\ 0 & x>0\end{cases}
$$

5. We say u is a weak solution of

$$
(*)\left\{\begin{array}{l}
{[g(u)]_{t}+[f(u)]_{x}=0} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

if u satisfies

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty} g(u) v_{t}+f(u) v_{x} d x d t+\int_{-\infty}^{\infty} \phi(x) v(x, 0) d x=0
$$

for all $v \in C^{\infty}(\mathbb{R} \times[0, \infty))$ with compact support. Suppose u is a weak solution of $\left({ }^{*}\right)$ such that u has a jump discontinuity across the curve $x=\xi(t)$, but u is smooth on either side of the curve $x=\xi(t)$. Let $u^{-}(x, t)$ be the value of u to the left of the curve and $u^{+}(x, t)$ be the value of u to the right of the curve. Prove that u must satisfy the condition

$$
\frac{[f(u)]}{[g(u)]}=\xi^{\prime}(t)
$$

across the curve of discontinuity, where

$$
\begin{aligned}
& {[f(u)]=f\left(u^{-}\right)-f\left(u^{+}\right)} \\
& {[g(u)]=g\left(u^{-}\right)-g\left(u^{+}\right)}
\end{aligned}
$$

Answer: If u is a weak solution of $(*)$, then

$$
\int_{0}^{\infty} \int_{-\infty}^{\infty}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t+\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x=0
$$

for all smooth functions $v \in C^{\infty}(\mathbb{R} \times[0, \infty))$ with compact support. Let v be a smooth function such that $v(x, 0)=0$, and break up the first integral into the regions Ω^{-}, Ω^{+} where

$$
\begin{aligned}
& \Omega^{-} \equiv\{(x, t): 0<t<\infty,-\infty<x<\xi(t)\} \\
& \Omega^{+} \equiv\{(x, t): 0<t<\infty, \xi(t)<x<+\infty\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
0=\int_{0}^{\infty} \int_{-\infty}^{\infty} & {\left[g(u) v_{t}+f(u) v_{x}\right] d x d t+\int_{-\infty}^{\infty} g(\phi(x)) v(x, 0) d x } \\
& =\iint_{\Omega^{-}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t+\iint_{\Omega^{+}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t
\end{aligned}
$$

Combining the Divergence Theorem with the fact that v has compact support and $v(x, 0)=0$, we have

$$
\begin{aligned}
\iint_{\Omega^{-}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t=- & \iint_{\Omega^{-}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t \\
& +\int_{x=\xi(t)}\left[g\left(u^{-}\right) v \nu_{2}+f\left(u^{-}\right) v \nu_{1}\right] d s
\end{aligned}
$$

where $\nu=\left(\nu_{1}, \nu_{2}\right)$ is the outward unit normal to Ω^{-}.

Similarly, we see that

$$
\begin{aligned}
\iint_{\Omega^{+}}\left[g(u) v_{t}+f(u) v_{x}\right] d x d t=- & \iint_{\Omega^{+}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t \\
& -\int_{x=\xi(t)}\left[g\left(u^{+}\right) v \nu_{2}+f\left(u^{+}\right) v \nu_{1}\right] d s
\end{aligned}
$$

By assumption, u is a weak solution of

$$
[g(u)]_{t}+[f(u)]_{x}=0
$$

and u is smooth on either side of $x=\xi(t)$. Therefore, u is a strong solution on either side of the curve of discontinuity. Consequently, we see that

$$
\iint_{\Omega^{-}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t=0=\iint_{\Omega^{+}}\left[(g(u))_{t}+(f(u))_{x}\right] v d x d t
$$

Combining these facts, we see that

$$
\int_{x=\xi(t)}\left[g\left(u^{-}\right) v \nu_{2}+f\left(u^{-}\right) v \nu_{1}\right] d s-\int_{x=\xi(t)}\left[g\left(u^{+}\right) v \nu_{2}+f\left(u^{+}\right) v \nu_{1}\right] d s=0 .
$$

Since this is true for all smooth functions v, we have

$$
g\left(u^{-}\right) \nu_{2}+f\left(u^{-}\right) \nu_{1}=g\left(u^{+}\right) \nu_{2}+f\left(u^{+}\right) \nu_{1},
$$

which implies

$$
\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{g\left(u^{-}\right)-g\left(u^{+}\right)}=-\frac{\nu_{2}}{\nu_{1}} .
$$

Now the curve $x=\xi(t)$ has slope given by the negative reciprocal of the normal to the curve; that is,

$$
\frac{d t}{d x}=\frac{1}{\xi^{\prime}(t)}=-\frac{\nu_{1}}{\nu_{2}}
$$

Therefore,

$$
\xi^{\prime}(t)=-\frac{\nu_{2}}{\nu_{1}}=\frac{f\left(u^{-}\right)-f\left(u^{+}\right)}{g\left(u^{-}\right)-g\left(u^{+}\right)}=\frac{[f(u)]}{[g(u)]},
$$

as claimed.

