Math 220A Practice Midterm - Fall 2002

1. Classify the following in terms of degree of nonlinearity:
(a) $u_{t}+e^{u} u_{x}=x^{2}$
(b) $u_{t}+x^{2} u_{x}=e^{u}$
(c) $x^{3} u_{t}+u_{x}^{2}=1$
(d) $u_{t}+x^{3} u_{x}=\sin \left(x^{2}\right)$
(e) $u_{x t}+\left[\frac{u^{2}}{2}\right]_{x}=\cos \left(u_{x}\right)$
2. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+u u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}2 & x<0 \\ 1 & 0<x<1 \\ 0 & x>1\end{cases}
$$

which satisfies the entropy condition.
3. Solve

$$
\left\{\begin{array}{l}
u_{t}+u_{x}^{2}=0 \\
u(x, 0)=-x^{2}
\end{array}\right.
$$

Find the time T for which $|u| \rightarrow+\infty$ as $t \rightarrow T$.
4. Solve

$$
\left\{\begin{array}{l}
u_{x}+x u_{y}-4 u=0 \\
u(1, y)=y^{2}
\end{array}\right.
$$

5. Find the unique weak solution of

$$
\left\{\begin{array}{l}
u_{t}+u^{2} u_{x}=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where

$$
\phi(x)= \begin{cases}0 & x<0 \\ 1 & 0<x<2 \\ 0 & x>2\end{cases}
$$

which satisfies the Oleinik entropy condition.
6. Let f, g be C^{∞} functions. Consider the initial value problem

$$
\left\{\begin{array}{l}
{[g(u)]_{t}+[f(u)]_{x}=0} \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

(a) Give a definition for a strong solution of this initial value problem.
(b) Give a definition for a weak solution of this initial value problem.
(c) Prove that any strong solution is in fact a weak solution.
7. (a) Find the general solution of

$$
u_{t t}+2 u_{x t}-3 u_{x x}=0
$$

(b) Find the solution of the initial-value problem,

$$
\left\{\begin{array}{l}
u_{t t}+2 u_{x t}-3 u_{x x}=0 \\
u(x, 0)=\phi(x) \\
u_{t}(x, 0)=\psi(x) .
\end{array}\right.
$$

